1188. Орлов А.И. Организационно-экономическое моделирование и искусственный интеллект в организации производства в эпоху цифровой экономики // Инновации в менеджменте. 2021. № 2(28). С. 36-45.
https://elibrary.ru/download/elibrary_4 ... 482186.pdfУДК 123; JEL Classification: А10, В40
Орлов А.И.,
д.э.н., д.т.н., к.ф.-м.н., профессор,
зав. лаб. экономико-математических методов в контроллинге,
МГТУ им. Н.Э. Баумана
ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В ОРГАНИЗАЦИИ ПРОИЗВОДСТВА
В ЭПОХУ ЦИФРОВОЙ ЭКОНОМИКИ
Аннотация:
Организационно-экономическое моделирование - научная основа технологий искусственного интеллекта. Их актуальность растет в эпоху цифровой экономики. В статье рассмотрены научные результаты по этой тематике и опыт их практического использования, накопленный за более чем 30 лет Институтом высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана. Основное внимание уделено статистическим методам управления качеством продукции - составной части теории и практики организации производства.
Ключевые слова: организация производства, организационно-экономическое моделирование, искусственный интеллект, цифровая экономика, управление качеством, Институт высоких статистических технологий и эконометрики
ORGANIZATIONAL-ECONOMIC MODELING AND ARTIFICIAL INTELLIGENCE IN PRODUCTION ORGANIZATION IN THE ERA OF THE DIGITAL ECONOMY
Alexander I. Orlov,
Dr.Sci.Econ., Dr.Sci.Tech., Cand.Phys-Math.Sci., professor,
head of Laboratory of economic-mathematical methods in controlling, BMSTU
Abstract
Organizational and economic modeling is the scientific basis of artificial intelligence technologies. Their relevance is growing in the era of the digital economy. The article discusses the scientific results on this topic and the experience of their practical use, accumulated over more than 30 years by the Institute of High Statistical Technologies and Econometrics, Bauman Moscow State Technical University. The main attention is paid to statistical methods of product quality management - an integral part of the theory and practice of production organization.
Keywords: production organization, organizational-economic modeling, artificial intelligence, digital economy, quality management, Institute of High Statistical Technologies and Econometrics.
Введение
Организационно-экономическое моделирование, в том числе теория принятия решений, является научной основой технологий искусственного интеллекта. Это научное направление является все более востребованным в ходе бурного развития цифровой экономики. В настоящее время уже обсуждается предложение о введении в средних школах нового предмета "принятие решений". Для успешного конструирования будущего полезно критически проанализировать результаты прежних исследований. В настоящей статье кратко рассмотрены научные результаты и опыт их практического использования, накопленный Институтом высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана. Он занимается рассматриваемой тематикой уже более 30 лет. Основное внимание уделено статистическим методам управления качеством продукции - составной части теории и практики организации производства. Рассказано об истории создания и результатах деятельности Центра статистических методов и информатики (в настоящее время - Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана).
Основные понятия и термины
Широко используемые понятия обычно используются в публикациях во многих смыслах. Для достижения однозначности понимания необходимо давать определения используемых терминов, как это принято в федеральных законах РФ. Естественно, другие авторы могут предпочитать иные определения.
Поясним используемые в настоящей работе термины.
Организационно-экономическое моделирование (ОЭМ) – научная, практическая и учебная дисциплина, посвященная разработке, изучению и применению математических и статистических методов и моделей в экономике и управлении народным хозяйством, прежде всего промышленными предприятиями и их объединениями. Такое определение дано нами в выпущенном в МГТУ им. Н.Э. Баумана учебнике по организационно-экономическому моделированию в трех частях (Орлов А.И., 2009, 2011, 2012). В настоящее время магистранты факультета "Инженерный бизнес и менеджмент" МГТУ им. Н.Э. Баумана изучают одноименную дисциплину, используя тот же учебник.
В "Национальной стратегии развития искусственного интеллекта на период до 2030 года принято следующее определение: "... искусственный интеллект - комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений". В этом определении ничего не говорится про научную основу "комплекса технологических решений". По нашему мнению, в социально-экономической области в качестве такой основы можно использовать организационно-экономическое моделирование.
Согласно нормативному документу ВАК: "Организация производства (по отраслям) – область науки и техники, изучающая проблемы становления, эффективного функционирования и совершенствования производственных процессов, научно-организационные и практические методы и средства решения таких проблем на всех уровнях. Специальность включает в себя разработку и совершенствование научных, методологических и системотехнических принципов организации производства, создание и применение методов и средств мониторинга, исследование и анализ различных организационных, технологических и технических решений на всех уровнях организации процессов создания конкурентоспособной продукции и производственных услуг на основе широкого использования новых информационных технологий. Решение указанных проблем качественно повышает уровень организации производственной деятельности предприятий различных отраслей и способствует ускорению их научно-технического прогресса" (паспорт специальности 05.02.22 "Организация производства (по отраслям)" ). В МГТУ более 100 лет ведутся работы в области организации производства, со времен Н.Ф. Чарновского (1914). Кафедра "Экономика и организация производства" МГТУ им. Н.Э. Баумана, организованная в1929 г., была первой среди кафедр в этой области в нашей стране. Накоплен большой опыт научных исследований, участия в прикладных работах и преподавания. Выпущено большое число статей и книг. Отметим недавний учебник (Некрасов Л.А., Скворцов Ю.В., 2018). История и перспективы науки об организации производства рассмотрены в (Фалько С.Г., 1990). Эволюции концепций управления предприятиями промышленности посвящена работа (Фалько С.Г., 2007). Автору настоящей работы в области организации производства наиболее интересны следующие направления исследований, по которым нами выпущены многочисленные публикации:
- статистические методы управления качеством продукции;
- система экологического менеджмента на предприятии,
- анализ, оценка и управление рисками,
- управление запасами (материально-техническими ресурсами).
Все эти области исследований включены в паспорт научной специальности 05.02.22 "Организация производства (по отраслям)".
Под цифровой экономикой понимаем разработку и применение информационно-коммуникационных технологий в экономике и управлении (Лойко В.И., Луценко Е.В., 2018). Этой тематикой, как и искусственным интеллектом, автор занимается уже полвека. Бурное развитие началось с публикации в 1948 г. известной книги "Кибернетика" Н. Винера. Для обозначения потока работ использовались различные термины - кибернетика, информатика, системный анализ, проблемы управления, принятие решений, исследование операций ... Мода на термины менялась, но суть оставалась прежней. Так, сейчас модны нейросетевые методы, основные идеи которых были разработаны в середине ХХ в. (Согласно распространенным определениям, нейросеть - это математическая модель (и ее компьютерное воплощение), построенная по аналогии с сетями нервных клеток живых организмов.) А термин "кибернетика" употребляется сейчас редко.
В настоящее время наблюдаем бурный рост информационно-коммуникационных технологий. Этот процесс справедливо называют цифровой революцией. Она проявляется в принципиальных изменениях технологических, организационно-экономических и социальных процессов. Количество изменений переходит в качество. Как следствие, назрела необходимость перемен в экономической теории, в частности, преодоление рыночной экономики и переход к новой парадигме - солидарной информационной экономике, являющейся возрождением идей основоположника экономической науки Аристотеля (подробнее см. (Орлов А.И., 2019), (Орлов А.И., Сажин Ю.Б., 2020) и др.).
Управление качеством: прошлое в настоящем и будущем
Несмотря на взрывной характер цифровой революции, заметная доля интеллектуальной жизни специалистов прежних времен остается актуальной и сейчас. Некоторые научные результаты остаются актуальными, не превзойденными в дальнейших работах, т.е. не уходят в прошлое. Приведем несколько конкретных фактов в рамках рассматриваемой тематики. Так, новая парадигма экономической теории основана на книгах Аристотеля. По-прежнему актуальны многие разделы книг Н.Ф. Чарновского (1914) столетней давности. Например, раздел "Системы оплаты труда" его учебника (Чарновский, 1914, с.217 - 248), выпущенного более ста лет назад. Работы А.Н. Колмогорова 1930-х годов нужны современным исследователям (Орлов А.И., 2014).
В 1983 - 1984 гг. кафедру "Экономика и организация производства" МГТУ им. Н.Э. Баумана возглавлял крупнейший ученый в области стандартизации и организации производства, профессор, доктор технических наук Василий Васильевич Бойцов (1908 - 1997) — создатель системы отечественных государственных стандартов в России и первый Председатель Государственного Комитета СССР по стандартам. К сожалению, в дальнейшие годы система стандартизации была во многом разрушена. В результате проявились серьезные проблемы с качеством продукции, в том числе потребительских товаров. Для наведения порядка в этой области, очевидно, прежде всего необходим анализ накопленного опыта, прежде всего советского периода.
Среди основных целей стандартизации - нормативное оформление лучших управленческих практик, проверенных рациональных способов действий. В качестве примера рассмотрим "Комплексные системы управления качеством продукции" (КС УКП). Эти системы были созданы в ходе многочисленных научно-методических разработок, начало которой относится к концу 1960-х гг. Они проводились научными работниками Всесоюзного научно-исследовательского института стандартизации (ВНИИС) совместно с сотрудниками промышленных предприятий различных отраслей и регионов. Большое значение имела организационная и методическая поддержка Госстандарта ССР и непосредственно его председателя В.В. Бойцова. Широкомасштабный производственный эксперимент на Украине (в Львовской области) подтвердил научную и практическую ценность концепции КС УКП и основных ее элементов. На основе результатов, полученных в ходе промышленного эксперимента, опыт по созданию КС УКП был одобрен специальным решением ЦК КПСС в августе 1973 г. и рекомендован к широкому внедрению.
Обсудим основные характерные черты КС УКП. Выявим, в чем ее значение, что КС УКП имеет общего с предшествующими системами, что она внесла в международную копилку передового опыта управления качеством, значительная часть которого обобщена в стандартах ИСО серии 9000?
Прежде всего подчеркнем, что КС УКП - результат научного обобщения накопленного к тому времени отечественного и хорошо известного нашим специалистам зарубежного опыта разработки и внедрения систем качества. Она аккумулировала в себе все лучшее, все прогрессивное, что последовательно накапливалось в предшествующих отечественных системах, среди которых отметим Саратовскую БИП (бездефектное изготовление продукции), Горьковскую КАНАРСПИ (качество, надежность, ресурс с первых изделий), Ярославскую НОРМ (научная организация робот по увеличению моторесурса) и др. Принципиальная идея разработки КС УКП - системно-комплексный подход, базирующийся на стандартизации. В основу КС УКП были положены принципы общей теории управления и разработанная к тому времени принципиальная модель управления качеством продукции", разобранная в (Гличев А.В., 2001). Примерами КС УКП являются Комплексная система управления качеством ярославского объединения "Автодизель"(Комплексная система, 1973) и Московская городская система управления качеством продукции (Московская городская, 1981).
Как подчеркивает один из наиболее авторитетных стандартизаторов А.В. Гличев (2001), КС УКП, ИСО и TQM (Total Quality Management) - вехи мирового опыта ХХ в. в области управления качеством продукции. При этом стандарты ИСО серии 9000, по его мнению, в ряде случаев уступают содержанию КС УКП. Прежде всего, это касается соединения в петле качества стадий жизненного цикла продукции с некоторыми функциями. Другой принципиальный недостаток он видит в не вполне четком определении состава и содержания специальных функций управления качеством продукции. Весьма важно, что, выражаясь словами А.В. Гличева: "... TQM - это в значительной мере тот виток диалектической спирали, который возвращает нас к Саратовской системе БИП, когда управление качеством было ориентировано в первую очередь на человека и на его роль в производственном процессе". Следовательно, констатируем, что основные идеи КС УКП отнюдь не устарели, опыт, накопленный в 1970-80-х годах, необходимо использовать в современных условиях, опираясь на идеи одного из заведующих кафедрой ИБМ-2 МГТУ им. Н.Э. Баумана проф. В.В. Бойцова. Конечно, с учетом разработок XXI в., например, системы искусственного интеллекта «Шесть сигм» как подхода к совершенствованию бизнеса (Фалько С.Г., Орлов А.И., 2004).
Нет ничего более постоянного, чем популярные ошибки исследователей. В настоящее время они распространены не меньше, чем десятилетия назад. Приведем три примера, подробнее рассмотренных в (Орлов А.И., 2012) и других наших публикациях. Как тогда приходилось разъяснять, что неверно утверждение "запасы должны быть минимальны", а верно: "запасы должны быть оптимальны", так и сейчас (имеется в виду классическая оптимизационная модель Вильсона управления запасами, предложенная Харрисом за 19 лет до Вильсона). Как тогда объяснял, что распределения реальных статистических данных, как правило, ненормальны, так и сейчас приходится (как следствие, любые рассуждения, основанные на предположении о нормальном распределении результатов наблюдений, напоминают поиск под фонарем ключей, потерянных в кустах в темноте). Как тогда профаны советовали проверять нормальность с помощью критериев Колмогорова и омега-квадрат, так и сейчас. И т.д., и т.п.
Новое в XXI в. - это развертывающаяся на наших глазах цифровая революция (Лойко В.И., Луценко Е.В., 2018). Для обеспечения правильности управленческих решений, нацеленных в будущее, важно проанализировать прошлое, выделить в нем ценное.
Организация и первые годы работы
Института высоких статистических технологий и эконометрики
Термин «высокие статистические технологии» входит в название нашей крайней научной монографии (Лойко В.И., Луценко Е.В., 2019), используется на наших базовых сайтах "Высокие статистические технологии" и "Лаборатория экономико-математических методов в контроллинге" , в том числе в названиях учебников, на форуме . При публикации статей часто указано, что они подготовлены в Институте высоких статистических технологий и эконометрики (ИВСТЭ) МГТУ им. Н.Э. Баумана. Поэтому целесообразно дать основную информацию об ИВСТЭ.
История и предыстория ИВСТЭ. Институт высоких статистических технологий и эконометрики (ИВСТЭ) организован нами в 1989 г. Он на инициативных, хоздоговорных и госбюджетных началах занимается развитием, изучением и внедрением высоких статистических технологий, т.е. наиболее современных технологий анализа технических, экономических, социологических, медицинских данных, ориентированных на использование в условиях современного производства и экономики. Основной интерес для ИВСТЭ представляют применения высоких статистических технологий для анализа конкретных экономических данных, т.е. в эконометрике.
Вначале Институт действовал как Центр статистических методов и информатики (создан в 1989 г.), позже - как Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества (1989 - 1992), затем - снова как Центр статистических методов и информатики (1992 - 1993). В 1993 г. преобразован в Лабораторию эконометрических исследований Московского государственного института электроники и математики, а с 1997 г. действует под своим нынешним именем. ИВСТЭ работает на базе кафедры ИБМ-2 "Экономика и организация производства" в симбиозе с Лабораторией экономико-математических методов в контроллинге Научно-образовательного центра "Контроллинг и управленческие инновации" (руководитель Научно-образовательного центра - д.э.н., проф. С.Г. Фалько).
У ИВСТЭ есть и предыстория. В 1978-1985 гг. активно действовала комиссия «Статистика объектов нечисловой природы и экспертные оценки» Научного Совета АН СССР по комплексной проблеме «Кибернетика».
Следующий этап предыстории ИВСТЭ - Рабочая группа по упорядочению системы стандартов по прикладной статистике и другим статистическим методам управления качеством. В нашей стране с начала 1970-х годов на базе ВНИИС стали разрабатываться государственные стандарты по статистическим методам. В связи с обнаружением в них грубых ошибок в 1985 г. мы организовали "Рабочую группу" с указанным выше названием. В ее работе приняли участие 66 специалистов, в том числе 15 докторов и 36 кандидатов наук. О деятельности Рабочей группы рассказано в итоговой статье (Орлов А.И., 1997). В соответствии с рекомендациями Рабочей группы 24 из 31 государственного стандарта по статистическим методам были отменены в 1986-87 гг.
На основе результатов Рабочей группы можно сделать важный вывод о сложностей внедрения лучших управленческих практик с помощью нормативных документов (стандартов). Ясно, что такие документы полезны практикам. Но лишь при условии, что они не содержат ошибок. Застандартизованные ошибки могут принести большой вред. Были выявлены две основные причины появления ошибок в государственных стандартах по статистическим методам управления качеством - низкая квалификация разработчиков, прежде всего руководителей, и отсутствие системы контроля за качеством нормативных документов и исправления выявленных недостатков. Снизить вред ошибочных стандартов можно путем отказа от обязательности их применения, т.е. использования их в качестве рекомендаций, наряду с другими публикациями. Кардинальное же искоренение ошибок возможно лишь путем глобального повышения научного уровня специалистов, применяющих статистические методы.
Центр статистических методов и информатики и Институт высоких
статистических технологий и эконометрики
В 1988-89 гг. наиболее активная часть Рабочей группы (10 докторов и 15 кандидатов наук) составили "Аванпроект комплекса методических документов и пакетов программ по статистическим методам стандартизации и управления качеством" (около 67 п.л.). К сожалению, Госстандарт не пожелал финансировать реализацию заказанного им "Аванпроекта". Тогда решено было действовать самостоятельно. На собрании в центре Москвы (в Политехническом музее) 20 февраля 1989 г. был организован (на общественных началах) Центр статистических методов и информатики (ЦСМИ; в настоящее время - Институт высоких статистических технологий и эконометрики).
Как юридическое лицо Всесоюзный центр статистических методов и информатики (ВЦСМИ) Центрального правления Всесоюзного экономического общества создан Постановлением Президиума Центрального Правления Всесоюзного экономического общества № 5-7 от 25 декабря 1989 г. Постановление подписано В.С. Павловым, в тот момент - министром финансов СССР, позже - первым и последним председателем Кабинета министром СССР. Директором ВЦСМИ был назначен А.И. Орлов.
Основная тематика работ ВЦСМИ - разработка средств искусственного интеллекта - диалоговых систем по современным статистическим методам управления качеством. На основе ранее подготовленного "Аванпроекта" к середине 1990 г. в ВЦСМИ были разработаны 7 базовых программных продуктов, а именно, СПК, АТСТАТ-ПРП, СТАТКОН, АВРОРА-РС, ЭКСПЛАН, ПАСЭК, НАДИС (информация о них дана в статье (Орлов А.И., 1992). В работе этих средств искусственного интеллекта участвовали 128 специалистов. В дальнейшем к ВЦСМИ присоединялись новые группы научно-технических работников, уже к концу 1991 г. нас было более 300. Информация о программных продуктах и другой деятельности ЦСМИ постоянно помещалась в журналах "Заводская лаборатория" и "Надежность и контроль качества".
Программные продукты, разработанные ВЦСМИ, были приобретены и использовались более чем в 100 организациях и предприятиях. Среди них - производственные объединения "Уралмаш", "АвтоВАЗ", "Пластик", Центральный научно-исследовательский институт черной металлургии им. Бардина, Научно-исследовательский институт стали, Всесоюзный научно-исследовательский институт эластомерных материалов и изделий, Научно-исследовательский институт прикладной химии, Центральный научно-исследовательский институт химии и механики, Научно-производственное объединение "Орион", Научно-исследовательский центр по безопасности атомной энергетики, Всесоюзный научно-исследовательский институт экономических проблем развития науки и техники, Всесоюзный научно-исследовательский институт нефтепереработки, МИИТ, Казахский политехнический институт, Ульяновский политехнический институт, Донецкий государственный университет и др. Таким образом, разработки ВЦСМИ быстро стали востребованными.
Всесоюзная статистическая ассоциация
Параллельно с выполнением работ по договорам с организациями и предприятиями ЦСМИ и ВЦСМИ вели работу по объединению статистиков. В апреле 1990 г. в Большом Актовом Зале Московского Энергетического института прошла Учредительная конференция Всесоюзной организации по статистическим методам и их применениям. На Учредительном съезде Всесоюзной статистической ассоциации (ВСА) в октябре 1990 г. в Московском экономико-статистическом институте эта организация вошла в состав ВСА в качестве секции статистических методов (Орлов А.И., 1991).
В соответствии с реальной структурой статистики ВСА делилась на 4 секции: 1) практической статистики, 2) статистических методов и их применений, 3) статистики надежности, ориентированной на проблематику оборонно-промышленного комплекса, 4) социально-экономической статистики. Названия секций, зафиксированные в документах ВСА, не вполне соответствуют действительности. Первая секция состояла из работников Госкомстата (ныне - Росстат), большинство членов второй и третьей занимались не только теорией, но и практической деятельностью, в том числе в социально-экономической области, а четвертая состояла из преподавателей статистических дисциплин в экономических вузах (готовящих специалистов для официального статистического ведомства). В мероприятиях секции статистических методов ВСА активно участвовали несколько сот человек. Основной тематикой работ многих из этих специалистов являлись статистические методы в сертификации (управлении качеством). Однако после развала СССР предприятия и НИИ уже не имели возможности внедрять современные статистические методы, исследователям пришлось перейти в режим выживания, многие эмигрировали или ушли из науки. Численность участников научных семинаров сократилась на порядок. Как следствие, ВСА фактически прекратила работу. Согласно Уставу решение о роспуске Всесоюзной статистической ассоциации может принять только ее съезд. Такого решения не было, т.е. с юридической точки зрения Всесоюзная статистическая ассоциация продолжает существовать.
Наша базовая бизнес-идея была такова: ЦСМИ и ВЦСМИ разрабатывает статистические методы, программные и методические продукты, ВСА и РАСМ их распространяют и внедряют.
В 1980 - 1990 гг. была проведена большая работа по анализу положения дел в области теории и практики статистики в нашей стране. В ЦСМИ и РАСМ, объединивших большинство ведущих российских специалистов, коллективными усилиями разработан единый подход к проблемам применения статистических методов в сертификации и управлении качеством, т.е. новая парадигма статистических методов (математической статистики, прикладной статистики, эконометрики, организационно-экономического моделирования, математических методов исследования). Был сформулирован «социальный заказ» - разработать серию учебников согласно новой парадигме. К настоящему времени он выполнен в рамках отечественной научной школы в области организационно-экономического моделирования, эконометрики и статистики, результаты представлены в статье (Орлов А.И., 2019а).
Дальнейшие работы Института высоких статистических технологий и эконометрики
С 1993 г. по настоящее время Институт ведет научные исследования по статистическим методам анализа данных (эконометрике и прикладной статистике), организационно-экономическому моделированию, математическим и инструментальным методам экономики и управления. Разработана новая парадигма математических методов исследования и новая парадигма экономики на основе солидарной информационной экономики. Большое внимание уделяется проблемам контроллинга, инноваций в менеджменте, организации производства (прежде всего, в области управления качеством), математическим моделям микроэкономики и макроэкономики, теории риска, науковедения и наукометрии. В частности, разрабатывались методология и методы
- эконометрического анализа нечисловых данных,
- прогнозирования индексов инфляции и макроэкономических показателей (первоначально - для Министерства обороны Российской Федерации),
- построения и использования математических моделей процессов налогообложения (Математическое моделирование, 1997),
- оценки рисков реализации инновационных проектов высшей школы (для Министерства науки и технологий Российской Федерации),
- оценки влияния различных факторов на формирование налогооблагаемой базы ряда налогов (для Минфина Российской Федерации).
ИВСТЭ прорабатывал перспективы применения современных статистических и экспертных методов для анализа данных о научном потенциале (для Министерства науки и технологий Российской Федерации), разрабатывал методологическое, программное и информационное обеспечение анализа рисков химико-технологических объектов (для Международного научно-технического центра), проводил маркетинговые исследования (для Промрадтехбанка, фирм, торгующих растворимым кофе, программным обеспечением), выполнял иные работы.
В 2010-2012 гг. Институт совместно с Группой компаний "Волга-Днепр" и Ульяновским государственным университетом участвовал в разработке АСППАП - автоматизированной системы прогнозирования и предотвращения авиационных происшествий (в соответствии с Постановлением Правительства РФ № 218 от 9 апреля 2010 г.). С 2013 г. основное внимание уделяется разработке организационно-экономического обеспечения контроллинга, инноваций и менеджмента в ракетно-космической отрасли (Орлов А.И., Луценко Е.В., 2016).
Институт вел и ведет и фундаментальные научные исследования, в частности, госбюджетные научные исследования в МГТУ им. Н.Э. Баумана. Основные публикации сосредоточены в журналах "Заводская лаборатория. Диагностика материалов" (более 90 статей за 1989-2020 гг., в которых указано, что они выполнены в ИВСТЭ), "Контроллинг", "Инновации в менеджменте", "Управление большими системами", в "Научном журнале КубГАУ" и др.
Институт обеспечивает научно-методическую поддержку преподаванию дисциплин "Прикладная статистика", "Прикладная статистика", "Статистика", "Эконометрика", "Организационно-экономическое моделирование", "Контроллинг рисков", выполнению выпускных квалификационных работ (включая МВА) и диссертаций.
Заключение
Выше в обобщенной форме представлена информация о направлениях деятельности и основных научных результатах Института высоких статистических технологий и эконометрики, действующего в настоящее время на базе кафедры "Экономика и организация производства" МГТУ им. Н.Э. Баумана. Организационно-экономическое моделирование является научной основой искусственного интеллекта в социально-экономической области и с успехом применяется для решения задач управления производством. Основное внимание уделено проблемам управления качеством продукции и лишь кратко отмечены возможности использования организационно-экономического моделирования и инструментов искусственного интеллекта в системах экологического менеджмента на предприятии, при анализе, оценке и управлении рисками, для рационализации управления материально-техническими ресурсами. Бурное развитие цифровой экономики на основе информационно-коммуникационных технологий дает основания ожидать широкого применения наработок ИВСТЭ в современных условиях. В частности, актуальными являются такие разделы организационно-экономического моделирования, как теория и методы разработки и принятия управленческих решений (Орлов А.И., 2018), в том числе на основе экспертных технологий (Орлов А.И., 2011). Новый импульс к развитию получает и эконометрика как наука о статистических методах в экономике и управлении (Агаларов З.С., Орлов А.И., 2021).
Литература:
1. Агаларов З.С., Орлов А.И. Эконометрика. Учебник. - М.: Издательско-торговая корпорация «Дашков и К°», 2021. — 380 с.
2. Гличев А.В. Основы управления качеством продукции. - М.: РИА "Стандарты и качество", 2001. - 120 с.
3. Комплексная система управления качеством / Р.Н. Арсеньев, М.А. Григорьев, А.М. Добрынин, В.А. Долецкий, Ю.А. Щеглов. - Ярославль: Верхневолжское книжное издательство., 1973. - 256 с.
4. Лойко В.И., Луценко Е.В., Орлов А.И. Современная цифровая экономика. – Краснодар: КубГАУ, 2018. – 508 с.
5. Лойко В.И., Луценко Е.В., Орлов А.И. Высокие статистические технологии и системно-когнитивное моделирование в экологии : монография. – Краснодар : КубГАУ, 2019. – 258 с.
6. Математическое моделирование процессов налогообложения (подходы к проблеме). Коллективная монография под редакцией В.Г. Кольцова, В.Н. Жихарева, Нат. Ю. Ивановой, А.И. Орлова. - М.: Изд-во Центра элитарного образования Министерства общего и профессионального образования РФ, 1997. - 232 с.
7. Московская городская система управления качеством продукции: Нормативно-методическое обеспечение. - М.: Издательство стандартов , 1981. - 160 с.
8. Некрасов Л.А., Скворцов Ю.В. и др. Организация и планирование машиностроительного производства. Производственный менеджмент / Л.А. Некрасов, Е.С. Постникова, Ю.В. Скворцов, Т.В. Уханова; под редакцией Ю. В. Скворцова. - Изд. 2-е, стереотип. - М.: Студент, 2018. - 414 с.
9. Орлов А.И. Создана единая статистическая ассоциация / Вестник Академии наук СССР. 1991. №7. С. 152-153.
10. Орлов А.И. Внедрение современных статистических методов с помощью персональных компьютеров / Качество и надежность изделий. №5(21). - М.: Знание, 1992. - С. 51-78.
11. Орлов А.И. Сертификация и статистические методы // Заводская лаборатория. Диагностика материалов. 1997. Т.63. №3. С. 55-62.
12. Орлов А.И. Организационно-экономическое моделирование: : учебник : в 3 ч. Ч.1: Нечисловая статистика. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. — 542 с.
13. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.2. Экспертные оценки. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 486 с.
14. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.3. Статистические методы анализа данных. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 624 с.
15. Орлов А.И. Вероятностно-статистические методы в работах А.Н. Колмогорова // Научный журнал КубГАУ. 2014. №98. С. 158–180.
16. Орлов А.И. Методы принятия управленческих решений: учебник. - М.: КНОРУС, 2018. - 286 с.
17. Орлов А.И. Цифровая экономика, инновации в менеджменте и идеи Аристотеля // Инновации в менеджменте. 2019. №20. С. 74-79.
18. Орлов А.И. Отечественная научная школа в области организационно-экономического моделирования, эконометрики и статистики / Контроллинг. 2019а. №73. С. 28-35.
19. Орлов А.И., Луценко Е.В., Лойко В.И. Организационно-экономическое, математическое и программное обеспечение контроллинга, инноваций и менеджмента: монография / под общ. ред. С. Г. Фалько. – Краснодар : КубГАУ, 2016. – 600 с.
20. Орлов А.И., Сажин Ю.Б. Солидарная информационная экономика как основа новой парадигмы экономической науки // Инновации в менеджменте. 2020. №26. С. 52- 59.
21. Чарновский Н.Ф. Организация промышленных предприятий по обработке металлов. - М.: Московское научное издательство, 1914. - 308 с.
22. Фалько С.Г. Наука об организации производства: история, современность, перспективы. – М.: О-во «Знание» РСФСР, 1990. – 56 с.
23. Фалько С.Г. Эволюция концепций управления предприятиями промышленности. – М.: ЦЭМИ РАН, 2007. – 50 с.
24. Фалько С.Г., Орлов А.И. «Шесть сигм» как подход к совершенствованию бизнеса / Контроллинг. 2004. №4(12). С.42-46.
References:
1. Agalarov Z.S., Orlov A.I. Ekonometrika. Uchebnik. - M.: Izdatel'sko-torgovaya korporaciya «Dashkov i K°», 2021. — 380 s.
2. Glichev A.V. Osnovy upravleniya kachestvom produkcii. - M.: RIA "Standarty i kachestvo", 2001. - 120 s.
3. Kompleksnaya sistema upravleniya kachestvom / R.N. Arsen'ev, M.A. Grigor'ev, A.M. Dobrynin, V.A. Doleckij, YU.A. SHCHeglov. - YAroslavl': Verhnevolzhskoe knizhnoe izdatel'stvo., 1973. - 256 s.
4. Lojko V.I., Lucenko E.V., Orlov A.I. Sovremennaya cifrovaya ekonomika. – Krasnodar: KubGAU, 2018. – 508 s.
5. Lojko V.I., Lucenko E.V., Orlov A.I. Vysokie statisticheskie tekhnologii i sistemno-kognitivnoe modelirovanie v ekologii : monografiya. – Krasnodar : KubGAU, 2019. – 258 s.
6. Matematicheskoe modelirovanie processov nalogooblozheniya (podhody k probleme). Kollektivnaya monografiya pod redakciej V.G. Kol'cova, V.N. ZHihareva, Nat. YU. Ivanovoj, A.I. Orlova. - M.: Izd-vo Centra elitarnogo obrazovaniya Ministerstva obshchego i professional'nogo obrazovaniya RF, 1997. - 232 s.
7. Moskovskaya gorodskaya sistema upravleniya kachestvom produkcii: Normativno-metodicheskoe obespechenie. - M.: Izdatel'stvo standartov , 1981. - 160 s.
8. Nekrasov L.A., Skvorcov YU.V. i dr. Organizaciya i planirovanie mashinostroitel'nogo proizvodstva. Proizvodstvennyj menedzhment / L.A. Nekrasov, E.S. Postnikova, YU.V. Skvorcov, T.V. Uhanova; pod redakciej YU. V. Skvorcova. - Izd. 2-e, stereotip. - M.: Student, 2018. - 414 s.
9. Orlov A.I. Sozdana edinaya statisticheskaya associaciya / Vestnik Akademii nauk SSSR. 1991. №7. S. 152-153.
10. Orlov A.I. Vnedrenie sovremennyh statisticheskih metodov s pomoshch'yu personal'nyh komp'yuterov / Kachestvo i nadezhnost' izdelij. №5(21). - M.: Znanie, 1992. - S. 51-78.
11. Orlov A.I. Sertifikaciya i statisticheskie metody // Zavodskaya laboratoriya. Diagnostika materialov. 1997. T.63. №3. S. 55-62.
12. Orlov A.I. Organizacionno-ekonomicheskoe modelirovanie: : uchebnik : v 3 ch. CH.1: Nechislovaya statistika. — M.: Izd-vo MGTU im. N. E. Baumana, 2009. — 542 s.
13. Orlov A.I. Organizacionno-ekonomicheskoe modelirovanie : uchebnik : v 3 ch. CH.2. Ekspertnye ocenki. — M.: Izd-vo MGTU im. N. E. Baumana, 2011. — 486 s.
14. Orlov A.I. Organizacionno-ekonomicheskoe modelirovanie : uchebnik : v 3 ch. CH.3. Statisticheskie metody analiza dannyh. - M.: Izd-vo MGTU im. N.E. Baumana, 2012. - 624 s.
15. Orlov A.I. Veroyatnostno-statisticheskie metody v rabotah A.N. Kolmogorova // Nauchnyj zhurnal KubGAU. 2014. №98. S. 158–180.
16. Orlov A.I. Metody prinyatiya upravlencheskih reshenij: uchebnik. - M.: KNORUS, 2018. - 286 s.
17. Orlov A.I. Cifrovaya ekonomika, innovacii v menedzhmente i idei Aristotelya // Innovacii v menedzhmente. 2019. №20. S. 74-79.
18. Orlov A.I. Otechestvennaya nauchnaya shkola v oblasti organizacionno-ekonomicheskogo modelirovaniya, ekonometriki i statistiki / Kontrolling. 2019a. №73. S. 28-35.
19. Orlov A.I., Lucenko E.V., Lojko V.I. Organizacionno-ekonomicheskoe, matematicheskoe i programmnoe obespechenie kontrollinga, innovacij i menedzhmenta: monografiya / pod obshch. red. S. G. Fal'ko. – Krasnodar : KubGAU, 2016. – 600 s.
20. Orlov A.I., Sazhin YU.B. Solidarnaya informacionnaya ekonomika kak osnova novoj paradigmy ekonomicheskoj nauki // Innovacii v menedzhmente. 2020. №26. S. 52- 59.
21. CHarnovskij N.F. Organizaciya promyshlennyh predpriyatij po obrabotke metallov. - M.: Moskovskoe nauchnoe izdatel'stvo, 1914. - 308 s.
22. Fal'ko S.G. Nauka ob organizacii proizvodstva: istoriya, sovremennost', perspektivy. – M.: O-vo «Znanie» RSFSR, 1990. – 56 s.
23. Fal'ko S.G. Evolyuciya koncepcij upravleniya predpriyatiyami promyshlennosti. – M.: CEMI RAN, 2007. – 50 s.
24. Fal'ko S.G., Orlov A.I. «SHest' sigm» kak podhod k sovershenstvovaniyu biznesa / Kontrolling. 2004. №4(12). S.42-46.