1243. Орлов А.И. Обобщенная аддитивно-мультипликативная модель оценки рисков на основе нечетких и интервальных исходных данных / Заводская лаборатория. Диагностика материалов. 2022. Т.89. №1. С. 74-84.
DOI:
https://doi.org/10.26896/1028-6861-2023-89-1-74-84УДК 519.87
ОБОБЩЕННАЯ АДДИТИВНО-МУЛЬТИПЛИКАТИВНАЯ МОДЕЛЬ ОЦЕНКИ РИСКОВ НА ОСНОВЕ НЕЧЕТКИХ И ИНТЕРВАЛЬНЫХ ИСХОДНЫХ ДАННЫХ
© Александр Иванович Орлов
Московский государственный технический университет им. Н.Э. Баумана,
Россия, 105005, Москва, Бауманская 2-я, д. 5; e-mail:
prof-orlov@mail.ru Среди математических моделей исследования рисков важное место занимают аддитивно-мультипликативные модели оценки рисков. Составляющими таких моделей являются: трехступенчатые иерархические системы рисков (строят для конкретной прикладной ситуации); оценки частных рисков (определяют экспертно для конкретного проекта, продукта и т.п.); показатели весомости конкретных видов частных рисков (находят на основе опроса экспертов в конкретной прикладной области); алгоритмы расчета оценок групповых рисков по оценкам частных рисков и общего риска на основе оценок групповых рисков. В качестве примеров рассмотрены трехступенчатые иерархические системы рисков при выпуске нового инновационного изделия и при выполнении проектов по разработке ракетно-космической техники. Предложен алгоритм аддитивно-мультипликативной модели оценки рисков общего вида. Оценки частных рисков являются произведениями показателей весомости на показатели выраженности, что соответствует известному способу оценки риска в виде произведения среднего ущерба на вероятность нежелательного события. Оценки групповых рисков строятся по оценкам частных рисков аддитивно, а итоговая оценка общего риска рассчитывается по оценкам групповых рисков мультипликативно. В предыдущих работах автора рассматривался частный случай аддитивно-мультипликативной модели оценки рисков, в котором, в частности, составляющие модели интерпретировались в терминах теории вероятностей. Предлагается оценки частных рисков и коэффициентов весомости проводить на основе интервальной математики и теории нечеткости. Приведены правила арифметических операций над интервальными и треугольными нечеткими числами. Продемонстрировано применение алгоритма аддитивно-мультипликативной модели оценки рисков на основе треугольных нечетких чисел на примере оценки рисков реализации инновационных проектов. В рамках интервальной математики рассмотрены оценки рисков при выполнении проектов по разработке ракетно-космической техники. Развитый в статье подход соответствует основным положениям теории устойчивости математических моделей реальных явлений и процессов и результатам системной нечеткой интервальной математики.
Ключевые слова: риск, вероятность, математические методы оценки рисков, аддитивно-мультипликативная модель, экспертные оценки, нечеткие числа, интервальная математика.
GENERALIZED ADDITIVE-MULTIPLICATIVE RISK ESTIMATION MODEL BASED ON FUZZY AND INTERVAL INITIAL DATA
© Alexander I. Orlov
Bauman Moscow State Technical University, 5, 2-ya Baumanskaya ul., Moscow, 105005, Russia; e-mail:
prof-orlov@mail.ru Among the mathematical models of risk research, an important place is occupied by additive-multiplicative models of risk estimation. The components of such models are: three-stage hierarchical risk systems (built for a specific applied situation); partial risk estimators (determined by experts for a specific project, product, etc.); indicators of the weight of specific types of partial risks (found on the basis of a survey of experts in a particular application area); algorithms for calculating group risk estimators based on partial risk estimators and general risk estimator based on group risk estimators. As examples, three-stage hierarchical risk systems are considered in the production of a new innovative product and in the implementation of projects for the development of rocket and space technology. An algorithm for an additive-multiplicative model for risk estimation of a general form is proposed. Estimates of partial risks are products of weighting indicators by severity indicators, which corresponds to the well-known method of risk estimation in the form of the product of average damage by the probability of an undesirable event. Group risk estimators are built additively from i partial risk estimators, and the final overall risk estimator is calculated multiplicatively from group risk estimators. In previous works of the author, a special case of an additive-multiplicative risk estimation model was considered, in which, in particular, the components of the model were interpreted in terms of probability theory. It is proposed to carry out estimators of partial risks and weight coefficients on the basis of interval mathematics and fuzzy theory. The rules of arithmetic operations on interval and triangular fuzzy numbers are given. The application of the algorithm of the additive-multiplicative risk estimation model based on triangular fuzzy numbers is demonstrated using the example of risk estimation for the implementation of innovative projects. Within the framework of interval mathematics, risk estimators are considered in the implementation of projects for the development of rocket and space technology. The approach developed in this research article corresponds to the main provisions of the theory of stability of mathematical models of real phenomena and processes and to the results of systemic fuzzy interval mathematics.
Keywords: risk, probability, mathematical methods of risk estimation, additive-multiplicative model, expert estimates, fuzzy numbers, interval mathematics.
Введение
Мы определяем риск как нежелательную возможность [1]. В научной и практической деятельности широко используется термин "безопасность". Безопасность и риск непосредственно связаны между собой, являясь как бы «зеркальным отражением» друг друга. Термин "безопасность" - антоним к термину "риск".
Фундаментальная серия монографий "Безопасность России" выпускается под научным руководством Н.А. Махутова. Она состоит из нескольких десятков томов (см., например, [2]).
Укажем ряд научных публикаций по проблемам безопасности и риска из многих тысяч работ, ограничившись публикациями 2021 - 2022 г.
Начнем с техногенного риска. Актуальным проблемам безопасности критически и стратегически важных объектов посвящена работа [3]. Традиционные и перспективные методы обеспечения промышленной безопасности высокорисковых производств боеприпасной отрасли рассмотрены в [4]. Проблемы управления техногенной безопасностью на основе риск-ориентированного подхода изучаются в [5]. Управление рисками на железнодорожном транспорте - предмет работ [6, 7]. Морским технологическим комплексам посвящены работы [8, 9], а электрическим цепям - [10].
Экологическим и природным рискам посвящены работы [11 - 13]. Проблемы риска и безопасности в различным сферах общественной жизни рассмотрены в [14 - 16]. Значительно больше, чем в других областях, наблюдаем работ по теории и практике управления рисками в экономике и управлении [17 - 18]. Часто используется термин "риск-менеджмент" [19 - 21]. Есть и общие работы по принятию решений в условиях риска [22].
Математическим методам и моделям исследования рисков посвящена обобщающая статья [1]. Среди них важное место занимают аддитивно-мультипликативные модели оценки рисков, основанные на трехступенчатых иерархических системах рисков, в которых по оценкам частных рисков определяют групповые оценки, а те в свою очередь объединяют в интересующую исследователя оценку общего риска. В аддитивно-мультипликативной модели оценки рисков выделим следующие составляющие.
1) трехступенчатая иерархическая система рисков (строят для конкретной прикладной ситуации);
2) оценки частных рисков (определяют экспертно для конкретного проекта, продукта и т.п.);
3) показатели весомости (значимости, весомости, существенности, важности) конкретных видов частных рисков (находят на основе опроса экспертов в конкретной прикладной области);
4) алгоритмы расчета оценок групповых рисков по оценкам частных рисков и общего риска на основе оценок групповых рисков (по этим алгоритмам модели рассматриваемого вида получили свое название, поскольку на нижнем уровне оценки групповых рисков строятся по оценкам частных рисков аддитивно, а на верхнем уровне итоговая оценка риска рассчитывается по оценкам групповых рисков по мультипликативной схеме).
В наших предыдущих работах (см. [1, 23] и др.) частные риски оценивались баллами 0, 1, 2, 3, 4, 5, а коэффициенты весомости - вещественными (действительными) числами. В настоящей статье мы предлагаем обобщенную аддитивно-мультипликативную модель, в которой однозначные оценки частных рисков и коэффициенты весомости заменены их нечеткими аналогами, а именно, являются нечеткими треугольными числами или интервальными числами.
Частные и групповые риски для двух иерархических систем
Аддитивно-мультипликативная модель оценки рисков является достаточно общей для применений в различных предметных областях, но при этом достаточно простой и приспособленной для практических применений и расчетов. В терминологии В.В. Налимова [24] это - эскизная модель. В качестве примеров рассмотрим оценки рисков при выпуске нового инновационного изделия и при выполнении проектов по разработке ракетно-космической техники.
Вначале нами была разработана аддитивно-мультипликативная модель оценки рисков выполнения инновационных проектов в вузах (с участием внешнего партнера). Затем модель рассматриваемого типа была применена для оценки рисков при выпуске нового инновационного изделия.
Рассматриваем риск того, что выпуск инновационного изделия будет сорван. В соответствии с [1] классифицируем частные риски на производственные, коммерческие, финансовые и глобальные, выделяя соответствующие группы.
Чтобы оценить риск того, что производственные риски отрицательно повлияют на реализацию проекта (сорвут его выполнение в срок), введем следующие частные риски:
R11 – недооценка сложности производства, что приводит к высокому проценту бракованной продукции;
R21 – принципиальные ошибки при проектировании, из-за которых невозможно наладить непрерывное производство продукции;
R31 – риски несчастных случаев на производстве;
R41 – риски, связанные с возможным отсутствием (болезнь, увольнение) специалистов, без которых не может быть налажено производство, а также проблемы, которые возникают в процессе работы, связанные с другими непосредственными участниками работы.
Чтобы оценить риск того, что коммерческие риски отрицательно повлияют на реализацию проекта, введем следующие частные риски:
R12 – риски, связанные с деятельностью поставщиков (сроки, качество и объем поставки и т.д.);
R22 – риски, связанные с потребителями (не привлекательная продукция, то есть плохой маркетинг, высокая цена, изменение ситуации на рынке и т.д.);
R32 – риски, связанные с деятельностью конкурентов (запуск конкурентами аналогичных товаров, сговор между ними и т.д.);
R42 – риски, связанные с деятельностью органов государственной и муниципальной власти, общественных организаций.
Чтобы оценить риск того, что коммерческие риски отрицательно повлияют на реализацию проекта, введем следующие частные риски:
R13 – риски, связанные с изменением законодательства;
R23 – риски колебания курсов валют, курсов акций;
R33 – риски, порожденные ростом цен (инфляцией).
Чтобы оценить риск того, что глобальные риски отрицательно повлияют на реализацию проекта, введем следующие частные риски:
R14 – государственные и международные риски;
R24 – природные риски.
Всего выделено 13 частных рисков. Каждый из них можно детализировать дальше, конструируя четвертый иерархический уровень, пятый и т.д. Однако для получения предварительной оценки риска, по нашей экспертной оценке, достаточно использовать трехуровневые иерархические системы рисков.
Аддитивно-мультипликативная модели оценки рисков оказалась полезной и в ракетно-космической отрасли. Изучаем риск того, что проект по разработке ракетно-космической техники не будет выполнен в срок. В рассматриваемом случае групповые риски соответствуют следующим последовательным этапам:
1) подготовка концепции;
2) подготовка аванпроекта и эскизного проекта;
3) разработка конструкторской и технологической документации;
4) изготовление опытного образца;
5) наземные испытания;
6) корректировка документации по итогам документации;
7) летные испытания и доработка документации для производства;
8) запуск.
По всем 8 группам выделено 44 частных риска. Все они указаны в статье [23]. Здесь в качестве примера приведем перечень частных рисков по этапу 4 "Изготовление опытного образца";
R14 - риск ошибок при изготовлении деталей и блоков;
R24 - риск ошибок при сборке;
R34 - риск недостатка ресурсов (станочного парка, кадровых, компьютерных, временных и др. ресурсов);
R44 - риски. связанные с невыполнением обязательств смежниками и субподрядчиками;
R54 - организационный риск (риск срыва работ из-за плохой их организации);
R64 - риск, вызванный действиями поставщиков сырья, комплектующих, материалов (низкое качество, нарушение сроков);
R74 - внешний риск (риск по другим причинам).
В любой конкретной ситуации создание аддитивно-мультипликативной модели оценки рисков начинается с разработки трехуровневой иерархической системы рисков.
Алгоритм аддитивно-мультипликативной модели оценки рисков
Исходим из трехуровневой иерархической системы рисков, в которой выделены m групп рисков, j-ая из которых включает k(j) частных рисков Rij, где i = 1, 2, ..., k(j), j = 1, 2, ..., m (см. примеры в предыдущем разделе).
Каждый из частных рисков (факторов риска) второго порядка Rij имеет два показателя – выраженность Xij (показывает частоту встречаемости) и весомость Aij (насколько влияет на риск более высокого уровня). Эти показатели можно оценивать на основе различных моделей - вероятностно-статистической, интервальной, нечеткой.
Принимаем, что оценка Qij риска Rij имеет вид
Qij = AijXij, (1)
где Aij – показатель весомости (важности), например, оценка экономических потерь, вызванных данным видом риска, Xij – показатель его выраженности (величины). Эта формула обобщает известный способ оценки риска как произведения среднего ущерба (математического ожидания ущерба) на вероятность нежелательного события [1].
Оценка группового риска Qi для группы i имеет вид
Qi = Q i1 – Q i2 – … – Q ik(i) = Аi1Хi1 + Аi2Хi2 + ... + Аik(i)Хik(i), i = 1, 2, …, m, (2)
т.е. оценка группового риска равна сумме оценок частных рисков, входящих в эту группу.
Общий риск Q выражается через групповые риски следующим образом:
Q = 1 - (1 - Q1) (1 - Q2)... (1 - Qm). (3)
Формулы (1) - (3) полностью описывают алгоритм расчетов в аддитивно-мультипликативной модели оценки рисков. Оценки групповых рисков определяются по оценкам частных рисков аддитивно, а оценка общего (итогового) риска выражается через оценки групповых рисков мультипликативно.
Итоговая оценка общего риска Q может быть использована при оценке целесообразности реализации проекта, при определении приоритетности реализации проектов, при планировании распределения ресурсов на следующем интервале планирования (это важно в случае неудачной реализации проекта). С целью управления рисками оценка общего риска Q может быть использована для выявления влияния выраженности того или иного частного или группового фактора на итоговую оценку Q общего риска, оптимизации выбора изменений значений факторов с учетом имеющихся ресурсов.
Экспертные оценки активно используются на всех этапах построения и использования аддитивно-мультипликативной модели - при построении иерархической системы рисков, определении значений коэффициентов весомости, а затем выборе значений коэффициентов выраженности для конкретных проектов.
Интерпретация аддитивно-мультипликативной модели оценки рисков в терминах теории вероятностей
Она использовалась в работах [1, 23]. В этом подходе оценка риска Q - это дополнение до 1 вероятности P успешной реализации связанного с ним события, т.е. P = 1 - Q. Частному риску соответствует вероятность того, что соответствующее рисковое событие не осуществится. Групповому риску - вероятность того, что этап разработки ракетно-космической техники успешно выполнен в срок. В случае оценки рисков при выпуске нового инновационного изделия - вероятность того, что входящие в группу частные риски не помешают реализации проекта.
Цель разработки модели – оценка риска R наступления нежелательного события. Для расчета этого риска часто применяют вероятностную модель, согласно которой наступление нежелательного события B является случайным событием – подмножеством множества всех возможных элементарных событий. Риск (нежелательное событие) будем обозначать R, его числовую вероятностную оценку Q. Пусть Q – вероятность наступления нежелательного события R, тогда P = 1 – Q есть вероятность того, что нежелательного события удастся избежать. Для простоты изложения пусть Q – вероятность неудачи, тогда P = 1 – Q есть вероятность успеха, например, вероятность успешного выполнения инновационно-инвестиционного проекта по созданию изделия ракетно-космической техники (или его определенного этапа). В дальнейшем описании модели используется двойственность Q и P (с прикладной точки зрения важна оценка риска Q, в то время как модель описывается с помощью вероятностей P).
Если рисковые события для частных рисков несовместны, то оценка группового риска дается формулой (2). Отметим, что если эти события независимы, а соответствующие оценки рисков Qij малы, то формула (2) также справедлива с точностью до бесконечно малых более высокого порядка. Это следует из того, что
Pi = Pi1 Pi2... Pik(i) = (1 - Qi1) (1 - Qi2)... (1 - Qik(i)) = 1 - Qi1- Qi2 - ... - Qik(i) (4)
с точностью до бесконечно малых более высокого (чем Qij) порядка. Таким образом, два принципиально разных подхода (несовместность и независимость) дают одно и то же численное значение (в асимптотике), что повышает обоснованность использования формулы (2).
Агрегирование групповых рисков основано на предположении, что различные группы рисков действуют независимо, т.е. независимы соответствующие рисковые события. Тогда вероятность успешной реализации
P = P1P2...Pт,
соответственно общий риск Q есть
Q = 1 – P = 1 – P1P2...Pт.
Как известно [1], для исследования рисков используют математические модели и методы трех типов - вероятностно-статистические, интервальные и нечеткие. Понятие вероятности использовать в интервальных и нечетких моделях зачастую нецелесообразно. При разработке и применении интервальной математики и теории нечеткости алгоритм аддитивно-мультипликативной модели оценки рисков основан непосредственно на формулах (1) и (3), входящие в них величины не имеют вероятностных аналогов.
Построение системы оценок частных рисков и коэффициентов весомости
Вначале обсудим оценку выраженности Xij. Если есть обучающая выборка, то Xij целесообразно рассчитывать по статистическим данным (как частоту реализации нежелательного события). Альтернативный подход - применение той или иной технологии экспертного оценивания. В обоих подходах естественно давать оценки рисков с помощью лингвистических переменных.
В работах [1, 23] частные риски описывались лингвистическими переменными с 6 градациями, каждая из которых формировалась в терминах той или иной степени выраженности риска и кодировалась с помощью целых чисел от 0 до 5. А именно, использовался, например, следующая система значений:
0 - практически невозможное событие (с вероятностью не более 0,000001),
1 - крайне маловероятное событие (с вероятностью от 0,000001 до 0,0005),
2 - маловероятное событие (вероятность от 0,0005 до 0,001),
3 - событие с вероятностью, которой нельзя пренебречь (от 0,001 до 0,01),
4 - достаточно вероятное событие (вероятность от 0,01 до 0,1),
5 - событие с заметной вероятностью (более 0,1).
Полученные от экспертов балльные оценки рисков Xij измерены в порядковой шкале.
Рассмотрим различные возможности обобщения подхода, развитого в наших работах [1, 23] и др. В аддитивно-мультипликативных моделях оценки рисков можно использовать и различные иные системы значений для оценки частных рисков. А именно, может быть выбрано другое количество градаций. Численные значения оценок рисков не обязательно выбирать из множества {0, 1, 2, 3, 4, 5}. Градации могут быть описаны различными способами. Так, в [23] практически невозможное событие - это событие с вероятностью не более 0,01 (а не событие с вероятностью не более 0,000001, как выше).
Для применения формул (1) - (3) необходимы численные оценки рисков Хij для конкретных объектов экспертизы (изделий, проектов и т.п.). Их получают в результате применения той или иной экспертной технологии. При этом эксперты должны быть хорошо знакомы с конкретными изделиями или проектами.
Для оценки показателей весомости (важности) Aij (они одни и те же для всех проектов) также привлекают экспертов, но другой специализации - тех, кто знаком со всем многообразием рассматриваемых объектов экспертизы. Выбор набора чисел Aij должен быть согласован с выбором значений оценок рисков. Так, при использовании вероятностно-статистических моделей вероятности должны быть неотрицательны (т.е. оценки рисков не должны превышать 1). Так, при использовании принятой в [1, 23] системе значений оценок рисков максимальный риск достигается, когда эти значения равны 5. Естественно принять, что соответствующая вероятность при этом равна 0, а потому суммы Аi1, Аi2,..., Аik(i) при любом i = 1, 2, ..., m должны равняться 1/5.
Арифметические операции над интервальными и нечеткими числами
Исходная информация для применения алгоритма аддитивно-мультипликативной модели оценки рисков - это оценки выраженности Xij и показатели весомости Aij. Оценки рисков рассчитываются по формулам (1) - (3).
В предыдущих работах [1, 23] Xij и Aij - числа. Однако очевидно, что на практике значения Xij и Aij определяются лишь с некоторой точностью, имеют погрешности. В соответствии с теорией устойчивости математических методов и моделей [25] целесообразно использовать алгоритмы оценки рисков, в которых вместо вещественных чисел исходная информация - это интервальные или нечеткие числа Xij и Aij.
Основная задача настоящей статьи - разработка и апробация алгоритмов оценки размытости (погрешности) итоговых оценок общего риска на основе погрешностей оценок частных рисков и показателей весомости.
Для описания размытости исходных величин будем использовать два математических инструмента - интервальные числа и нечеткие треугольные числа.
В интервальной математике вещественные числа заменяются на интервалы (a, b), где a < b. Интервальное число (a, b) можно записать как или , где с = (a + b) / 2 и = (b - a) / 2. Здесь - погрешность определения интервального числа, т.е. показатель его размытости.
Арифметические операции над интервальными числами (a, b) и (c, d) определяются следующим образом. Для любых вещественных чисел a, b, c, d сумма и разность таковы:
(a, b) + (c, d) = (a + c, b + d), (a, b) - (c, d) = (a - d, b - c),
Для неотрицательных вещественных чисел a, b, c, d произведение и частное задаются формулами
(a, b) (c, d) = (ac, bd), (a, b) / (c, d) = (a / d, b / c).
Нечеткие числа описываются своими функциями принадлежности. Будем использовать треугольные нечеткие числа, которые задаются тремя вещественными числами a < b < c, у которых функция принадлежности равна 0 левее a, линейно возрастает от 0 до 1 на отрезке [a, b], линейно убывает от 1 до 0 на отрезке [b, c] и равна 0 правее с. Таким образом, функция принадлежности определяется треугольником в вершинами в точках (a, 0), (b, 1) и (c, 0), что и объясняет ее название. Треугольное нечеткое число полностью описывается вектором (a, b, c).
Отметим, что интервальное число (a, b) можно рассматривать как нечеткое число с функцией принадлежности, которая равна 0 левее a, равна 1 на отрезке [a, b] и равна 0 правее b.
Введем арифметические операции над треугольными нечеткими числами (a1, b1, c1) и (a2, b2, c2). Сумма и разность этих чисел таковы:
(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2),
(a1, b1, c1) - (a2, b2, c2) = (a1 - a2, b1 - b2, c1 - c2).
Для неотрицательных вещественных чисел a1 и a2 произведение и частное треугольных нечетких чисел задаются формулами
(a1, b1, c1) (a2, b2, c2) = (a1a2, b1b2, c1c2),
(a1, b1, c1) / (a2, b2, c2) = (a1 / c2, b1 / b2, c1 / a2).
Из всех видов нечетких чисел мы выбрали для моделирования треугольные нечеткие числа, поскольку они описываются небольшим числом параметров (тремя), а результаты арифметических операций над ними не выводят за пределы множества треугольных нечетких чисел. В аддитивно-мультипликативной моделях оценки рисков могут быть использованы нечеткие числа с другими функциями принадлежности, однако расчеты и интерпретация их результатов при этом существенно усложняются.
Оценки рисков при выпуске нового инновационного изделия
Продемонстрируем применение алгоритма аддитивно-мультипликативной модели оценки рисков, основанного на формулах (1) - (3), на примере оценки рисков реализации инновационных проектов.
В табл.1 приведены исходные данные - оценки частных рисков для пяти проектов и коэффициенты весомости - без учета их погрешностей. Наименования частных рисков приведен выше, в разделе "Частные и групповые риски для двух иерархических систем".
В табл. 2 и 3 приведены оценки рисков реализации инновационных проектов в случае, когда частные риски и коэффициенты весомости описываются треугольными нечеткими числами. Табл. 2 соответствует ситуации, когда нижние и верхние границы для оценок частных рисков отклоняются от их средних значений (см. табл. 1) на , а коэффициенты весомости - на . В табл. 3 допустимые отклонения в 2 раза больше - для оценок частных рисков до , а для коэффициентов весомости до .
Таблица 1. Исходные оценки рисков реализации инновационных проектов.
Table 1. Initial risk estimators for the implementation of innovative projects.
Исходные данные Оценки частных рисков для пяти проектов
Коэффициенты весомости Проект 1 Проект 2 Проект 3 Проект 4 Проект 5
1. Производственные риски
0,08 1 2 0 2 1
0,07 0 1 0 1 1
0,02 0 0 0 0 0
0,03 1 0 0 0 1
Q1 0,11 0,23 0 0,23 0,18
2. Коммерческие риски
0,05 0 1 1 1 1
0,07 1 2 5 1 2
0,02 0 1 1 1 0
0,06 1 1 1 1 1
Q2 0,13 0,27 0,48 0,2 0,25
3. Финансовые риски
0,06 0 0 0 0 0
0,07 1 1 1 1 1
0,07 0 0 0 0 0
Q3 0,07 0,07 0,07 0,07 0,07
4. Глобальные риски
0,11 1 1 1 1 1
0,09 0 0 0 0 0
Q4 0,11 0,11 0,11 0,11 0,11
Оценки рисков реализации инновационных проектов
Q 0,36 0,53 0,57 0,49 0,49
Таблица 2. Оценки рисков реализации инновационных проектов с треугольными нечеткими числами Ain вида A = (a - 0,005, a, a + 0,005) и Xin вида X = (x - 0,5, x, x + 0,5).
Table 2. Risk estimators for the implementation of innovative projects with triangular fuzzy numbers Ain of the form A = (a - 0,005, a, a + 0,005) and Xin of the form X = (x - 0,5, x, x + 0,5).
Коэффициенты весомости Оценки частных рисков для пяти проектов
Проект 1 Проект 2 Проект 3 Проект 4 Проект 5
1. Производственные риски
(0,075, 0,08, 0,085) (0,5, 1, 1,5) (1,5, 2, 2,5) (0, 0, 0,5) (1,5, 2, 2,5) (0,5, 1, 1,5)
(0,065, 0,07, 0,075) (0, 0, 0,5) (0,5, 1, 1,5) (0, 0, 0,5) (0,5, 1, 1,5) (0,5, 1, 1,5)
(0,015, 0,02, 0,025) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5)
(0,025, 0,03, 0,035) (0,5, 1, 1,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0,5, 1, 1,5)
Q1 (0,05, 0,11, 0,23) (0,14, 0,23, 0,35) (0, 0, 0,11) (0,14, 0,23, 0,35) (0,08, 0,18, 0,30)
2. Коммерческие риски
(0,045, 0,05, 0,055) (0, 0, 0,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5)
(0,065, 0,07, 0,075) (0,5, 1, 1,5) (1,5, 2, 2,5) (4,5, 5, 5) (0,5, 1, 1,5) (1,5, 2, 2,5)
(0,015, 0,02, 0,025) (0, 0, 0,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0, 0, 0,5)
(0,055, 0,06, 0,065) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5)
Q2 (0,06, 0,13, 0,25) (0,15, 0,27, 0,40) (0,35, 0,48, 0,59) (0,09, 0,20, 0,33) (0,15, 0,25, 0,38)
3. Финансовые риски
(0,055, 0,06, 0,065) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5)
(0,065, 0,07, 0,075) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5)
(0,065, 0,07, 0,075) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5)
Q3 (0,03, 0,07, 0,18) (0,03, 0,07, 0,18) (0,03, 0,07, 0,18) (0,03, 0,07, 0,18) (0,03, 0,07, 0,18)
4. Глобальные риски
(0,105, 0,11, 0,115) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5) (0,5, 1, 1,5)
(0,085, 0,09, 0,095) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5) (0, 0, 0,5)
Q4 (0,05, 0,11, 0,22) (0,05, 0,11, 0,22) (0,05, 0,11, 0,22) (0, 0,11, 0,34) (0,05, 0,11, 0,22)
Нечеткие оценки рисков реализации инновационных проектов
Q (0,18, 0,36, 0,63) (0,34, 0,53, 0,76) (0,40, 0,57, 0,77) (0,29, 0,49, 0,72) (0,28, 0.49, 0,73)
Таблица 3. Оценки рисков реализации инновационных проектов с треугольными нечеткими числами Ain вида A = (a - 0,01, a, a + 0,01) и Xin вида X = (x - 1, x, x + 1).
Table 3. Risk estimators for the implementation of innovative projects with triangular fuzzy numbers Ain of the form A = (a - 0,01, a, a + 0,01) and Xin of the form X = (x - 1, x, x + 1).
Коэффициенты весомости Оценки частных рисков для пяти проектов
Проект 1 Проект 2 Проект 3 Проект 4 Проект 5
1. Производственные риски
(0,07, 0,08, 0,09) (0, 1, 2) (1, 2, 3) (0, 0, 1) (1, 2, 3) (0, 1, 2)
(0,06, 0,07, 0,08) (0, 0, 1) (0, 1, 2) (0, 0, 1) (0, 1, 2) (0, 1, 2)
(0,01, 0,02, 0,03) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(0,02, 0,03, 0,04) (0, 1, 2) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 1, 2)
Q1 (0, 0,11, 0,37) (0,07, 0,23, 0,50) (0, 0, 0,24) (0,07, 0,23, 0,50) (0, 0,18, 0,45)
2. Коммерческие риски
(0,04, 0,05, 0,06) (0, 0, 1) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
(0,06, 0,07, 0,08) (0, 1, 2) (1, 2, 3) (4, 5, 5) (0, 1, 2) (1, 2, 3)
(0,01, 0,02, 0,03) (0, 0, 1) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 0, 1)
(0,05, 0,06, 0,07) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
Q2 (0, 0,13, 0,39) (0,06, 0,27, 0,56) (0,24, 0,48, 0,72) (0, 0,20, 0,48) (0,06, 0,25, 0,53)
3. Финансовые риски
(0,05, 0,06, 0,07) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(0,06, 0,07, 0,08) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
(0,06, 0,07, 0,08) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
Q3 (0, 0,07, 0,31) (0, 0,07, 0,31) (0, 0,07, 0,31) (0, 0,07, 0,31) (0, 0,07, 0,31)
4. Глобальные риски
(0,10, 0,11, 0,12) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
(0,08, 0,09, 0,10) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
Q4 (0, 0,11, 0,34) (0, 0,11, 0,34) (0, 0,11, 0,34) (0, 0,11, 0,34) (0, 0,11, 0,34)
Нечеткие оценки рисков реализации инновационных проектов
Q4 (0, 0,36, 0,82) (0,13, 0.53, 0,9) (0,24, 0,57, 0,9) (0.07, 0,49, 0,88) (0,06, 0,49, 0,88)
Анализ данных табл. 1 показывает, что риски реализации рассматриваемых инновационных проектов довольно велики - от 0,36 до 0,57. Следовательно, необходимо выработать приемы снижения выраженности частных рисков, а также подготовиться к возможному срыву выполнения проекта в срок. Рассчитанные интервалы для общего риска (последние строки табл. 2 и 3) не являются малыми и заметно расширяются при увеличении возможно разброса значений оценок частных рисков и коэффициентов. Констатируем, что завышение точности выводов нецелесообразно. Это утверждение соответствует результатам теории устойчивости математических моделей реальных явлений и процессов [25].
Оценки рисков при выполнении проектов по разработке ракетно-космической техники
Применим алгоритм аддитивно-мультипликативной модели оценки рисков, основанный на формулах (1) - (3), к исходным данным для двух проектов при разработке космической техники. Трехуровневая иерархическая система рисков описана выше, в разделе "Частные и групповые риски для двух иерархических систем". Значения оценок 44 частных рисков и соответствующих коэффициентов весомости (без погрешностей) для двух проектов приведены в [23]. Будем исходить из интервальных аналогов этих величин, которые введены по следующим правилам.
Оценке частного риска 0 соответствует интервал [0; 0,5], оценке 1 - интервал [0,5; 1,5], оценке 2 - интервал [1,5; 2,5], оценке 3 - интервал [2,5; 3,5], оценке 4 - интервал [3,5; 4,5], оценке 5 - интервал [4,5; 5,0]. Коэффициенты весомости представлялись как [A1, A2] = [A - 0,004; A + 0,004], где А - значения для соответствующего частного риска в [4].
Результаты расчетов приведены в табл. 4, а именно, интервальные оценки рисков этапов [Qi1, Qi2] и их альтернативные записи , где i = 1, 2, ...,8, а также интервальная оценка общего риска.
Таблица 4. Оценки рисков успешного выполнения проектов по разработке ракетно-космической техники (моделирование с помощью интервальных чисел)
Table 4. Risk estimators of successful implementation of projects for the development of rocket and space technology (modeling using interval numbers
Этап разработки проекта Проект 1 Проект 2
[Qi1, Qi2]
[Qi1, Qi2]
1) Концепция [0,126; 0,366] 0,246 0,12
[0,031; 0,178] 0,105 0,074
2) Разработка проекта [0.075; 0,286] 0,181 0,106
[0,033; 0,196] 0,115 0,082
3) Разработка рабочей документации [0,079; 0,306] 0,193 0,114
[0,035; 0,198] 0,117 0.082
4) Изготовление опытных изделий [0,140; 0,414] 0,277 0,137
[0,028; 0,204] 0,116 0,088
5) Наземная отработка [0,209; 0,444] 0,327 0,118
[0,029; 0,192] 0,111 0,082
6) Корректировка документации [0,065; 0,246] 0,156 0,091
[0,011; 0,148] 0,080 0,067
7) Летные испытания [0,244; 0,532] 0,388 0,144
[0,024; 0,186] 0,105 0,081
Запуск [0,162; 0,410] 0,289 0,124
[0,022; 0,174] 0,098 0,076
Проект в целом [0,700; 0,979] 0,840 0,140
[0,195; 0,805] 0,500 0,305
Накапливаясь от этапа к этапу, численная оценка риска для проекта 1 возрастает до явно недопустимого значения 0,840 0,140, при котором погрешность составляет всего лишь 16,67% от центрального значения. Следовательно, проект 1 с высокой вероятностью будет не выполнен в срок.
Для проекта 2, накапливаясь от этапа к этапу, оценка общего риска доходит до 0,500 0,305, соответственно вероятность успешного выполнения проекта 2 (т.е. в срок) близка к значению 0,5 с погрешностью составляющей 61% от центрального значения. Следовательно, проект 2 может быть как выполнен в срок, так и не выполнен с равной вероятностью.
Выводы
Аддитивно-мультипликативная модель оценки рисков обобщена для случая описания частных рисков и коэффициентов весомости интервальными и треугольными нечеткими числами. Построение системы оценок частных рисков и коэффициентов весомости освобождено от излишних предположений, принятых в предыдущих работах автора.
В качестве примеров рассмотрено применение предлагаемого подхода для оценки рисков реализации инновационных проектов (моделирование с помощью треугольных нечетких чисел) и рисков успешного выполнения проектов по разработке ракетно-космической техники (моделирование с помощью интервальных чисел).
Проблемы оценки рисков проектов при создании ракетно-космической техники на основе аддитивно-мультипликативной модели рассмотрены в [1, 23]. Эта модель включена в учебные курсы МГТУ им. Н.Э. Баумана.
Необходимость обобщения аддитивно-мультипликативная модели оценки рисков с целью описания частных рисков и коэффициентов весомости интервальными и треугольными нечеткими числами обоснована в [1]. Развитый в настоящей статье подход соответствует основным положениям теории устойчивости математических моделей реальных явлений и процессов [25] и результатам системной нечеткой интервальной математики [26].
Обобщенная аддитивно-мультипликативная модель оценки рисков на основе нечетких и интервальных исходных данных может успешно применяться в различных прикладных областях для оценки рисков и управления ими.
Автор благодарен А.А. Григорьевой и А.А. Юн за проведение вычислений и подготовку таблиц 1 - 4.
ЛИТЕРАТУРА
1. Орлов А. И. Математические методы исследования рисков (обобщающая статья) / Заводская лаборатория. Диагностика материалов. 2021. Т.87. № 11. С. 70-80.
2. Баришполец В. А., Беккер А. Д., . Бобров Ю. В и др. Безопасность России. Правовые, социально-экономические и научно-технические аспекты. безопасность сложных человеко-машинных систем: Тематический блок "Национальная безопасность". – М.: МГОФ "Знание", 2021. - 432 с.
3. Махутов Н. А. Актуальные проблемы безопасности критически и стратегически важных объектов / Заводская лаборатория. Диагностика материалов. 2018. Т.84. № 1 - 1. С. 5-9.
4. Махутов Н. А., Морозов П. М., Чевиков С. А. и др. Традиционные и перспективные методы обеспечения промышленной безопасности высокорисковых производств боеприпасной отрасли / Проблемы безопасности и чрезвычайных ситуаций. 2022. № 3. С. 5-13.
5. Москвичев В. В., Постникова У. С., Тасейко О. В. Управление техногенной безопасностью на основе риск-ориентированного подхода / Проблемы управления. 2022. № 3. С. 16-28.
6. Иванов Д. А., Охотников И. В., Сибирко И. В. Риск-менеджмент на железнодорожном транспорте. - М.: ООО "МАКС Пресс", 2022. - 120 с.
7. Шевченко А. И., Шарапов А. А., Денисов В. В., Шетилов В. Л. Риск-менеджмент состояния устойчивости перевозочного процесса на железнодорожном транспорте в условиях чрезвычайных ситуаций / Наука и техника транспорта. 2022. № 2. С. 109-117.
8. Латынцева С. В., Скороходов Д. А., Степанов И. В., Турусов С. Н. Риск-ориентированный подход к созданию программного обеспечения систем управления эксплуатацией морских технологических комплексов / Морские интеллектуальные технологии. 2022. № 2-1(56). С. 193-200. –
9. Махутов Н. А., Лепихин А. М., Лещенко В. В. Научные основы нормативного обеспечения прочности и безопасности морских подводных трубопроводов / Проблемы безопасности и чрезвычайных ситуаций. 2022. № 4. С. 94-107.
10. Боярков Д. А., Ященко А. В. Алгоритм риск-ориентированного управления техническим состоянием электрических сетей / Автоматизация в промышленности. 2022. № 1. С. 56-60.
11. Качалов Р. М., Ставчиков А. И., Альчикова Л. Т. Анализ углеродных выбросов и сопутствующих им факторов риска в современных экосистемах / Вестник МИРБИС. 2022. № 2(30). С. 87-95.
12. Камчыбеков, М. П., Мураталиев Н., Камчыбеков Ы. П. Сейсмический риск территории городов Токмок и Балыкчы, Кыргызстан / Вестник Института Сейсмологии Национальной Академии Наук Кыргызской Республики. 2022. №1(19). С. 44-50.
13. Гарелина С. А., Глубоков М. В., Латышенко К. П., Мазаник А. И. Экологический риск и оптимальное время функционирования полигонов твердых коммунальных отходов / Безопасность труда в промышленности. 2022. № 6. С. 20-26.
14. Шульц В.Л., Бочкарев С.А., Кульба В.В. и др. Сценарное исследование проблем обеспечения общественной безопасности в условиях цифровизации. - М.: Проспект, 2020. - 240 с.
15. Цуциев С. А. Безопасность военной службы в формате "риск-ориентированного" подхода / Военная мысль. 2022. № 6. С. 99-104.
16. Лобанов В. И., Каранина Е. В. Обеспечение социально-экономической безопасности в сфере культуры на основе риск-ориентированного подхода / Проблемы анализа риска. 2022. Т. 19. № 2. С. 10-16.
17. Качалов Р. М., Опарин С. Г., Слепцова Ю. А. и др. Теория и практика управления рисками. – СПб.: Санкт-Петербургский политехнический университет Петра Великого, 2020.- 236 с.
18. Орлова Л. Н. Риск-культура промышленных предприятий в контексте реализации ESG-принципов / Креативная экономика. 2022. Т. 16. № 6. С. 2257-2276.
19. Леванова Т. А., Леванова Е. Ю., Абрамова Н. Ю. Применение методов статистического анализа в системе риск-менеджмента / Вестник Российского университета кооперации. 2022. № 1(47). С. 76-79.
20. Бадалова А. Г., Демин С. С.,. Ларионов В. Г, Москвитин К. П. Управленческий инструментарий промышленного риск-менеджмента. - М.: Издательско-торговая корпорация "Дашков и Ко", 2022. - 144 с.
21. Акопян А. Р., Воронцова Ю. В., Панфилова Е. Е. Риск-менеджмент. - М.: Русайнс, 2022. - 264 с.
22. Фишхофф Б., Кадвани Д. Риск: очень краткое введение. – М.: Издательский дом "Дело" РАНХиГС, 2021. - 240 с.
23. Орлов А. И., Цисарский А. Д. Особенности оценки рисков при создании ракетно-космической техники / Национальные интересы: приоритеты и безопасность. 2013. №43(232). С. 37 – 46.
24. Налимов В. В. Теория эксперимента. - М.: Наука, 1971. - 208 с.
25. Орлов А. И. Устойчивые экономико-математические методы и модели. - М.: Ай Пи Ар Медиа, 2022. - 337 с.
26. Орлов А. И., Луценко Е. В. Анализ данных, информации и знаний в системной нечеткой интервальной математике. - Краснодар: КубГАУ, 2022. - 405 с.
REFERENCES
1. Orlov A. I. Mathematical methods for studying risks (resumptive article) / Zavod. Lab. Diagn. Mater. 2021. V.87.N 11. P.70-80 [in Russian].
2. Barishpolec V. A., Bekker A. D., . Bobrov YU. V i dr. Russian security. Legal, socio-economic and scientific-technical aspects. security of complex man-machine systems : Thematic block "National Security". – Moscow: MGOF "Znanie", 2021. - 432 p. [in Russian].
3. Mahutov N. A. Topical security issues of critical and strategic facilities / Zavod. Lab. Diagn. Mater. 2018. V.84. N 1 - 1. P. 5-9 [in Russian].
4. Mahutov N. A., Morozov P. M., CHevikov S. A. i dr. Traditional and promising methods of ensuring industrial safety of high-risk production of the ammunition industry / Problemy bezopasnosti i chrezvychajnyh situacij. 2022. N 3. P. 5-13 [in Russian].
5. Moskvichev V. V., Postnikova U. S., Tasejko O. V. Technogenic safety management based on a risk-based approach / Problemy upravleniya. 2022. N 3. P. 16-28. [in Russian]
6. Ivanov D. A., Ohotnikov I. V., Sibirko I. V. Risk management in railway transport. - Moscow: OOO "MAKS Press", 2022. - 120 p. [in Russian]
7. SHevchenko A. I., SHarapov A. A., Denisov V. V., SHetilov V. L. Risk management of the state of stability of the transportation process in railway transport in emergency situations / Nauka i tekhnika transporta. 2022. N 2. P. 109-117 [in Russian].
8. Latynceva S. V., Skorohodov D. A., Stepanov I. V., Turusov S. N. Risk-oriented approach to the creation of software for management systems for the operation of offshore technological complexes / Morskie intellektual'nye tekhnologii. 2022. N 2-1(56). P. 193-200 [in Russian].
9. Mahutov N. A., Lepihin A. M., Leshchenko V. V. Scientific Basis for Regulatory Assurance of the Strength and Safety of Offshore Subsea Pipelines / Problemy bezopasnosti i chrezvychajnyh situacij. 2022. N 4. P. 94-107 [in Russian].
10. Boyarkov D. A., YAshchenko A. V. Algorithm for risk-based management of the technical condition of electrical networks / Avtomatizaciya v promyshlennosti. 2022. N 1. P. 56-60 [in Russian].
11. Kachalov R. M., Stavchikov A. I., Al'chikova L. T. Analysis of carbon emissions and associated risk factors in modern ecosystems / Vestnik MIRBIS. 2022. N 2(30). P. 87-95 [in Russian].
12. Kamchybekov, M. P., Murataliev N., Kamchybekov Y. P. Seismic risk of the territory of the cities of Tokmok and Balykchy, Kyrgyzstan / Vestnik Instituta Sejsmologii Nacional'noj Akademii Nauk Kyrgyzskoj Respubliki. 2022. N 1(19). P. 44-50 [in Russian].
13. Garelina S. A., Glubokov M. V., Latyshenko K. P., Mazanik A. I. Ecological risk and optimal operating time of municipal solid waste landfills / Bezopasnost' truda v promyshlennosti. 2022. N 6. P. 20-26 [in Russian].
14. SHul'c V.L., Bochkarev S.A., Kul'ba V.V. i dr. Scenario study of the problems of ensuring public safety in the context of digitalization. - M.: Prospekt, 2020. - 240 p. [in Russian].
15. Cuciev S. A. Security of military service in the format of a "risk-based" approach / Voennaya mysl'. 2022. N 6. P. 99-104 [in Russian].
16. Lobanov V. I., Karanina E. V. Ensuring Socio-Economic Security in the Sphere of Culture Based on a Risk-Based Approach / Problemy analiza riska. 2022. V. 19. N 2. P. 10-16 [in Russian].
17. Kachalov R. M., Oparin S. G., Slepcova YU. A. i dr. Theory and practice of risk management. – Sankt-Peterburg: Sankt-Peterburgskij politekhnicheskij universitet Petra Velikogo, 2020.- 236 p. [in Russian]
18. Orlova L. N. Risk culture of industrial enterprises in the context of the implementation of ESG principles / Kreativnaya ekonomika. 2022. V. 16. N 6. P. 2257-2276 [in Russian].
19. Levanova T. A., Levanova E. YU., Abramova N. YU. Application of statistical analysis methods in the risk management system / Vestnik Rossijskogo universiteta kooperacii. 2022. N 1(47). P. 76-79 [in Russian].
20. Badalova A. G., Demin S. S.,. Larionov V. G, Moskvitin K. P. Management tools for industrial risk management. - M.: Izdatel'sko-torgovaya korporaciya "Dashkov i Ko", 2022. - 144 p. [in Russian].
21. Akopyan A. R., Voroncova YU. V., Panfilova E. E. Risk management. - M.: Rusajns, 2022. - 264 p. [in Russian].
22. Fishkhoff B., Kadvani D. Risk: a very short introduction. – M.: Izdatel'skij dom "Delo" RANHiGS, 2021. - 240 p. [in Russian].
23. Orlov A. I. Management decision-making methods. - M.: KNORUS, 2018. - 286 p. [in Russian].
24. Nalimov V. V. Theory of experiment. - M.: Nauka, 1971. - 208 p. [in Russian].
25. Orlov A. I. Stability economic and mathematical methods and models. - M.: Aj Pi Ar Media, 2022. - 337 p. [in Russian].
26. Orlov A. I., Lucenko E. V. Analysis of data, information and knowledge in systemic fuzzy interval mathematics. - Krasnodar: KubGAU, 2022. - 405 p. [in Russian].