Я разрабатываю методику 3D scanning-а, посредством анализа последовательности кадров видеоизображения. Ну и прежде чем начать вычисление трехмерных характеристик объектов сканируемой сцены, необходимо обнаружить сами объекты. В качестве предобработки применяется градиентная цветовая сегментация изображения. В результате похожие по цвету пиксели исходного изображения объединяются в сегменты. Принадлежностью каждого сегмента является набор параметров: цвет сегмента, координаты центра, площадь сегмента, значение градиентов яркости в RGB плоскостях. После сегментации получается изображение, состоящее из множества мелких сегментов. Необходимо найти статистический критерий, позволяющий путём объединения мелких сегментов изображения выделить объекты сцены.
Простыми словами это можно описать так: мы видим объекты, который ВЫДЕЛЯЮТСЯ на фоне других объектов, попросту не вписываются в общую закономерность.
Пример:
а) если посмотреть на большое скопление народа на площади, наше зрение уже не замечает конкретных людей, а видит однородную толпу, но если кто-нибудь начнёт размахивать ярко окрашенным транспарантом, наше зрение тут же отметит два объекта – толпу и транспарант.
б) если смотреть на крону дерева, мы видим однородную зелёную массу, и не замечаем каждый листик по отдельности. Человек в маскхалате незаметен на фоне зелени, так как зрение не находит различий в статистической оценке зелени и маскхалата.
На основании информации каждого сегмента изображения (кучность расположения центров сегментов, похожесть форм, похожесть цвета, направления градиентов) можно сформировать весовую функцию, определяющую магнетизм между сегментами, после чего по определённому пороговому значению выполнить объединение мелких сегментов. В результате должны получиться несколько крупных сегментов, которые и будут описывать контуры объектов сцены (каждому объекту соответствует крупный сегмент).
Ну а теперь сам вопрос: Какие методы статистики Вы можете порекомендовать для решения этой задачи?
|