Высокие статистические технологии

Форум сайта семьи Орловых

Текущее время: Чт янв 02, 2025 11:51 pm

Часовой пояс: UTC + 3 часа




Начать новую тему Ответить на тему  [ Сообщений: 2 ] 
Автор Сообщение
 Заголовок сообщения: Прикладная статистика Весна 2017 ИБМ 2-41,2, ИБМ 3-41,2
СообщениеДобавлено: Чт фев 02, 2017 11:43 pm 
Не в сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 11645
ПРИКЛАДНАЯ СТАТИСТИКА

Весенний семестр 2016-2017 уч. года
Группы ИБМ 2-41, ИБМ 2-42, ИБМ 3-41, ИБМ 3-42
Лектор – проф., д.э.н., д.т.н., к.ф.-м.н. А.И. Орлов

Суббота, 10.15 - 11.50, ауд. 216 улк

Лекция 1 (11 февраля 2017)

1. Первая статистическая публикация – описание процедуры и результатов переписи военнообязанных в книге «Числа» Ветхого Завета. Методологическая несостоятельность Росстата по сравнению с Библией.
2. Основные этапы развития представлений о статистике. Шекспир, государствоведение, Наполеон. Определение Б.В. Гнеденко.
3. Прикладная статистика – наука о том, как обрабатывать данные. Данные – любой вид зарегистрированной информации. Статистическая совокупность, генеральная совокупность, выборочная совокупность (выборка), их единицы. Современный этап - "большие данные" (пример - РИНЦ).
4. Признак – функция, определенная для единиц совокупности, значение признака – значение этой функции. Примеры значений признаков – числа, градации из некоторого множества (упорядоченные градации – порядковые признаки, неупорядоченные – номинальные признаки, два возможных значения - альтернативные (дихотомические, бинарные) признаки).
5. Выборка – 1) часть генеральной совокупности, 2) реализации (т.е. значения для определенного элементарного исхода) независимых одинаково распределенных случайных величин. Объем выборки.
6. Таблицы выборочных распределений. Данные с повторами (сгруппированные данные)
7. Вариационный ряд.
8. Выборочное среднее арифметическое и математическое ожидание. Закон больших чисел. Расчет выборочного среднего арифметического по сгруппированным данным.
9. Основные понятия теории статистического оценивания: состоятельные и несмещенные оценки (на примере выборочного среднего арифметического как оценки математического ожидания).
10. Выборочная и теоретическая дисперсии.

Лекция 2 (18 февраля 2017)
10а. Несмещенная оценка теоретической дисперсии. Две формулы для расчета выборочной дисперсии.
11. Выборочное среднее квадратическое отклонение и его аналог - теоретическое среднее квадратическое (среднее квадратичное, стандартное) отклонение.
12. Выборочный и теоретический коэффициенты вариации.
13. Минимум, максимум и размах как выборочные характеристики.
14. Мода выборки и амплитуда моды.
15. Выборочная медиана и теоретическая медиана.
16. Выборочные и теоретические верхний квартиль, нижний квартиль и межквартильное расстояние.
17. Расчет средних характеристик (средней арифметической, медианы, моды) заработной платы для условного предприятия.
18. Выборочные моменты. Показатели асимметрии и эксцесса.
19. Данные с повторами (сгруппированные данные) и соответствующие варианты формул для расчета выборочных характеристик.

Лекция 3 (04 марта 2017)

20. Непосредственный анализ статистических данных. Сравнение объемов выпуска продукции в РФ за 1990 г. и 2016 г.
21. Динамика макроэкономических характеристик РФ в 1990-2016 гг.
22. Динамика доли государства в экономике в ХХ в.
23. Демографическая статистика. Демографические прогнозы.

Лекция 4 (11 марта 2017)

24. Эмпирическая функция распределения. График эмпирической функции распределения. Свойства эмпирической функции распределения. Теорема Гливенко.
25. Статистика Колмогорова и ее распределение.
26. Основные идеи теории проверки статистических гипотез. Уровень значимости и мощность критерия. Лемма Неймана - Пирсона.
27. Критерий Колмогорова – критерий согласия с заданным фиксированным распределением.
28. Статистика омега-квадрат (Крамера - Мизеса - Смирнова) и ее распределение.
29. Критерий согласия с заданным фиксированным распределением на основе статистики омега-квадрат (Крамера - Мизеса - Смирнова).
30. Гистограммы. Формула Стерджесса.
31. Непараметрические ядерные оценки плотности.

Лекция 5 (18 марта 2017)

32. Прикладная статистика как наука о том, как обрабатывать данные - результаты наблюдений, измерений, испытаний, анализов, опытов. Статистические технологии. Десять основных этапов прикладного статистического исследования.
33. Необходимость выборочных исследований.
34. Биномиальная и гипергеометрическая модели выборки, их близость в случае большого объема генеральной совокупности по сравнению с выборкой.
35. Интервальное оценивание выборочной доли. Теорема Муавра-Лапласа.

Лекция 6 (25 марта 2017)

35а. Интервальное оценивание выборочной доли. Вывод формул.
36. Построение выборочной функции ожидаемого спроса и расчет оптимальной розничной цены при заданной оптовой цене (издержках).

Лекция 7 (01 апреля 2017)

37. Метод проверки гипотезы о равенстве долей.
38. Среднее арифметическое и его свойства. Сумма всех отклонений индивидуальных значений от выборочной средней арифметической. Изменение среднего арифметического при изменении всех значения варьирующего признака на одну и ту же величину.
39. Оптимизационные задачи, решениями которых являются выборочное среднее арифметическое и математическое ожидание. Разложение средних квадратов ошибки (теоретического и выборочного).
40. Среднее геометрическое. Свойства среднего геометрического. Неравенство между средним арифметическим и средним геометрическим. Изменение среднего геометрического при умножении усредняемых величин на константу. Переход к среднему арифметическому путем логарифмирования.
41. Среднее квадратическое и среднее гармоническое.
42. Степенное среднее и его частные случаи. Среднее геометрическое как предел степенных средних. Изменение степенного среднего при умножении усредняемых величин на константу.
43. Среднее по Коши и его частные случаи. Члены вариационного ряда как средние по Коши.

Лекция 8 (08 апреля 2017)

44. Оптимизационная задача, решением которой является выборочная медиана (при нечетном объеме выборки) и интервал между левой и правой медианами (при четном объеме выборки).
45. Средние по Колмогорову – определение и частные случаи. Степенные средние и среднее геометрическое как частные случаи средних по Колмогорову.
46. Взвешенные средние по Колмогорову (I типа – построенные по выборке, и II типа – построенные по вариационному ряду) и их частные случаи.
47. Эмпирическое распределение. Выборочная медиана как медиана эмпирического распределения (при четном объеме выборки n = 2k – интервал от k-го до (k+1)-го члена вариационного ряда).
48. Взвешенная медиана I типа (медиана случайной величины, вероятности совпадения которой с элементами выборки заданы) и взвешенная медиана II типа (медиана случайной величины, вероятности совпадения которой с членами вариационного ряда заданы).
49. Основные понятия теории измерений. Определение, примеры, группа допустимых преобразований для шкалы наименований. Основные понятия теории измерений. Определения, примеры, группы допустимых преобразований для шкал порядка, интервалов, отношений, разностей, абсолютной. Требование устойчивости (инвариантности) статистических выводов относительно допустимых преобразований шкал.

Лекция 9 (15 апреля 2017)

50. Средние по Коши, результат сравнения которых устойчив в порядковой шкале.
51. Средние по Колмогорову, результат сравнения которых устойчив в шкалах интервалов и отношений.
52. Показатели разброса. Особая роль дисперсии.
53. Внутригрупповая дисперсия и межгрупповая дисперсия. Разложение общей дисперсии на внутригрупповую и межгрупповую (разложение дисперсий Р.А. Фишера). Однофакторный дисперсионный анализ и распределение Фишера.
54. Выборочный и теоретический линейные парные коэффициенты корреляции К. Пирсона и их свойства.
55. Выборочный коэффициент ранговой корреляции Спирмена.

Лекция 10 (22 апреля 2017)

56. Вероятностно-статистические модели временных рядов. Математическое ожидание, дисперсия, автокорреляционная функция. Стационарные временные ряды.
57. Временные ряды (ряды динамики). Тренд, периодические колебания, случайные отклонения. Моментные и интервальные ряды. Полные и неполные ряды. Ряды абсолютных показателей и ряды относительных показателей. Графики.
58. Основные показатели (характеристики) временных рядов (рядов динамики). Абсолютный прирост. Темп роста. Темп прироста. Цепные показатели и базисные показатели.
59. Сглаживание временных рядов (рядов динамики). Метод укрупненных интервалов.
60. Скользящие средние.
61. Сглаживание временных рядов (рядов динамики) методом наименьших квадратов. Детерминированная постановка задачи минимизации. Метод наименьших квадратов (в сравнении с графическим методом, методом наименьших модулей (Лежандр) и методом минимизации максимального уклонения (Чебышёв). Подход метода наименьших квадратов к оцениванию параметров. Решение для случая линейного тренда.

Лекция 11 (29 апреля 2017)

61а. Пример восстановления линейной зависимости с помощью таблицы.
62. Восстановленные значения и оценка точности восстановления функции методом наименьших квадратов. Критерий правильности расчетов.
63. Вероятностно-статистическая модель порождения данных в методе наименьших квадратов. Оценка остаточной дисперсии. Точечный и интервальный прогноз.
64. Метод наименьших квадратов для модели, линейной по параметрам. Оценивание коэффициентов многочлена. Пакеты программ. Преобразования переменных.

Лекции 12 (6 мая 2017)

65. Метод наименьших квадратов в случае нескольких независимых переменных (регрессоров). Оценивание параметров функции Кобба-Дугласа. Интерпретация результатов сравнения восстановленных и исходных значений производственной функции.
66. Оценивание динамики потребительских цен на товары и услуги. Краткая история инфляции в России (1990-2017). Индивидуальные индексы. Весовые коэффициенты, задаваемые потребительской корзиной. Индекс потребительских цен (индекс инфляции).
67. Теорема умножения для индекса инфляции.

Лекции 13 (13 мая 2017)

67а. Отсутствие суммирования процентов по интервалам. Средний индекс (темп) инфляции. Годовая и среднемесячная инфляция.
68. Теорема сложения для индекса инфляции.
69. Инфляция в Германии в 1922 г.
70. Применения индекса инфляции. Приведение к сопоставимым ценам. Реальные проценты платы за депозит.

Лекция 14 (20 мая 2017)

70а. Реальные проценты платы за кредит. Оценка прожиточного минимума по методу Оршански.
71. Курс доллара в сопоставимых ценах. Международные сопоставления на основе паритета покупательной способности.
72. Виды инфляции: спроса, издержек, административная.
73. Примеры инфляционных процессов в различных странах и в различные времена.

Лекция 15 (27 мая 2017)

74. Индекс –показатель сравнения двух состояний одного и того же явления. Индивидуальный индекс. Сводный (общий) индекс. Отчетные данные и базисные данные. Индекс как показатель центральной тенденции (индекс средний из индивидуальных). Примеры.
75. Индексы Ласпейреса, Пааше, Ирвинга Фишера.
76. Развитие статистики в России. Земская статистика. Вред решений Всесоюзного совещания статистиков 1954 г.
77. Структура современной статистической науки (математическая статистика – прикладная статистика – статистические методы в предметных областях).
78. Этапы развития прикладной математической статистики. Описательная статистика (до 1900 г.) - тексты, таблицы, графики, отдельные расчетные приемы (выборочное среднее арифметическое, МНК).
79. Параметрическая статистика (1900 – 1933) - модели параметрических семейств распределений – нормальных, гамма и др., теория оценивания параметров и проверки гипотез.
80. Непараметрическая статистика (1933 – 1979) - произвольные непрерывные распределения, непараметрические методы оценивания и проверки гипотез.
81. Нечисловая статистика (с 1979) - выборка состоит из элементов произвольных пространств, использование показателей различия и расстояний.
82. Деление статистики по виду данных: статистика случайных величин, многомерный статистический анализ, статистика временных рядов и случайных процессов, нечисловая статистика.

Лекция 16 (03 июня 2017)

83. Пять точек роста: непараметрика, информационные технологии (бутстреп), устойчивость, статистика интервальных данных, нечисловая статистика.
84. Новая парадигма математических методов исследования. Сравнение старой и новой парадигм математических методов исследования.
85. Развитие статистики в России во второй половине ХХ в. и в ХXI в.

КУРС ЗАВЕРШЕН


Основная литература

1. Орлов А.И. Прикладная статистика. Учебник. – М.: Экзамен, 2006. - 671 с. http://www.ibm.bmstu.ru/nil/biblio.html ... 9-prikstat , http://orlovs.pp.ru/stat.php#k1 .
2. Орлов А.И. Эконометрика. Учебник. - М.: Экзамен, 2002, 2003 (2-е изд.), 2004 (3-е изд.). - 576 с. http://orlovs.pp.ru/econ.php#ek1 , http://www.ibm.bmstu.ru/nil/biblio.html#books-13-econ
3. Орлов А.И. Организационно-экономическое моделирование: учебник : в 3 ч. Часть 1: Нечисловая статистика. – М.: Изд-во МГТУ им. Н.Э. Баумана. – 2009. – 541 с.
http://ibm.bmstu.ru/nil/biblio.html#books-02-hsstat
4. Орлов А.И. Вероятность и прикладная статистика: основные факты: справочник. – М.: КНОРУС, 2010. – 192 с.
http://ibm.bmstu.ru/nil/biblio.html#books-01-verstat

Дополнительная литература

5. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. - М.: Наука, 1983. – 474 с.
6. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.
7. Орлов А.И., Федосеев В.Н. Менеджмент в техносфере: Учеб. пособие. – М.: Издательский центр «Академия», 2003. – 384 с. http://www.ibm.bmstu.ru/nil/biblio.html ... 05-mentech
8. Орлов А.И. Принятие решений. Теория и методы разработки управленческих решений. Учебное пособие. - М.: ИКЦ "МарТ"; Ростов н/Д: Издательский центр "МарТ", 2005. - 496 с. http://www.ibm.bmstu.ru/nil/biblio.html ... 10-uprresh
9. Орлов А.И. Теория принятия решений. Учебник. – М.: Экзамен, 2006. – 576 с. http://www.ibm.bmstu.ru/nil/biblio.html ... 1-teorresh
10. Русанова Г.В., Горчакова Л.С., Загонова Н.С. Задачник по дисциплине «Экономическая статистика». – М.: МГТУ им. Н.Э. Баумана, 2003. – 70 с.
11. Русанова Г.В.. Учебное пособие для практических занятий по курсу «Статистика». – М.; ИМПЭ, 1996.- 41 с.

Сайты в Интернете

Сайт «Высокие статистические технологии» http://orlovs.pp.ru
Форум сайта «Высокие статистические технологии» http://forum.orlovs.pp.ru/
Сайт Лаборатории экономико-математических методов в контролинге http://www.ibm.bmstu.ru/nil/lab.html
Сайт Федеральной службы государственной статистики http://www.gks.ru/wps/portal
Сайт РБК – РИА «РосБизнесКонсалтинг» http://www.rbc.ru/
Сайт Института проблем управления РАН http://www.ipu.ru/
Сайт Центрального экономико-математического института РАН http://www.cemi.rssi.ru/


Вернуться наверх
 Профиль  
 
 Заголовок сообщения: Re: Прикладная статистика Весна 2017 ИБМ 2-41,2, ИБМ 3-41,2
СообщениеДобавлено: Сб май 06, 2017 11:54 pm 
Не в сети

Зарегистрирован: Вт сен 28, 2004 11:58 am
Сообщений: 11645
ПРИКЛАДНАЯ СТАТИСТИКА

Весенний семестр 2016-2017 уч. года
Группы ИБМ 2-41, ИБМ 2-42, ИБМ 3-41, ИБМ 3-42
Лектор – проф., д.э.н., д.т.н., к.ф.-м.н. А.И. Орлов

ПРОЕКТ

1. Первая статистическая публикация – описание процедуры и результатов переписи военнообязанных в книге «Числа» Ветхого Завета. Методологическая несостоятельность Росстата по сравнению с Библией.
2. Основные этапы развития представлений о статистике. Шекспир, государствоведение, Наполеон. Определение Б.В. Гнеденко.
3. Прикладная статистика – наука о том, как обрабатывать данные. Данные – любой вид зарегистрированной информации. Статистическая совокупность, генеральная совокупность, выборочная совокупность (выборка), их единицы. Современный этап - "большие данные" (пример - РИНЦ).
4. Признак – функция, определенная для единиц совокупности, значение признака – значение этой функции. Примеры значений признаков – числа, градации из некоторого множества (упорядоченные градации – порядковые признаки, неупорядоченные – номинальные признаки, два возможных значения - альтернативные (дихотомические, бинарные) признаки).
5. Выборка – 1) часть генеральной совокупности, 2) реализации (т.е. значения для определенного элементарного исхода) независимых одинаково распределенных случайных величин. Объем выборки.
6. Таблицы выборочных распределений. Данные с повторами (сгруппированные данные)
7. Вариационный ряд.
8. Выборочное среднее арифметическое и математическое ожидание. Закон больших чисел. Расчет выборочного среднего арифметического по сгруппированным данным.
9. Основные понятия теории статистического оценивания: состоятельные и несмещенные оценки (на примере выборочного среднего арифметического как оценки математического ожидания).
10. Выборочная и теоретическая дисперсии. Несмещенная оценка теоретической дисперсии. Две формулы для расчета выборочной дисперсии.
11. Выборочное среднее квадратическое отклонение и его аналог - теоретическое среднее квадратическое (среднее квадратичное, стандартное) отклонение.
12. Выборочный и теоретический коэффициенты вариации.
13. Минимум, максимум и размах как выборочные характеристики.
14. Мода выборки и амплитуда моды.
15. Выборочная медиана и теоретическая медиана.
16. Выборочные и теоретические верхний квартиль, нижний квартиль и межквартильное расстояние.
17. Расчет средних характеристик (средней арифметической, медианы, моды) заработной платы для условного предприятия.
18. Выборочные моменты. Показатели асимметрии и эксцесса.
19. Данные с повторами (сгруппированные данные) и соответствующие варианты формул для расчета выборочных характеристик.
20. Непосредственный анализ статистических данных. Сравнение объемов выпуска продукции в РФ за 1990 г. и 2016 г.
21. Динамика макроэкономических характеристик РФ в 1990-2016 гг.
22. Динамика доли государства в экономике в ХХ в.
23. Демографическая статистика. Демографические прогнозы.
24. Эмпирическая функция распределения. График эмпирической функции распределения. Свойства эмпирической функции распределения. Теорема Гливенко.
25. Статистика Колмогорова и ее распределение.
26. Основные идеи теории проверки статистических гипотез. Уровень значимости и мощность критерия. Лемма Неймана - Пирсона.
27. Критерий Колмогорова – критерий согласия с заданным фиксированным распределением.
28. Статистика омега-квадрат (Крамера - Мизеса - Смирнова) и ее распределение.
29. Критерий согласия с заданным фиксированным распределением на основе статистики омега-квадрат (Крамера - Мизеса - Смирнова).
30. Гистограммы. Формула Стерджесса.
31. Непараметрические ядерные оценки плотности.
32. Прикладная статистика как наука о том, как обрабатывать данные - результаты наблюдений, измерений, испытаний, анализов, опытов. Статистические технологии. Десять основных этапов прикладного статистического исследования.
33. Необходимость выборочных исследований.
34. Биномиальная и гипергеометрическая модели выборки, их близость в случае большого объема генеральной совокупности по сравнению с выборкой.
35. Построение выборочной функции ожидаемого спроса и расчет оптимальной розничной цены при заданной оптовой цене (издержках).
36. Интервальное оценивание выборочной доли. Вывод формул.
37. Метод проверки гипотезы о равенстве долей.
38. Среднее арифметическое и его свойства. Сумма всех отклонений индивидуальных значений от выборочной средней арифметической. Изменение среднего арифметического при изменении всех значения варьирующего признака на одну и ту же величину.
39. Оптимизационные задачи, решениями которых являются выборочное среднее арифметическое и математическое ожидание. Разложение средних квадратов ошибки (теоретического и выборочного).
40. Среднее геометрическое. Свойства среднего геометрического. Неравенство между средним арифметическим и средним геометрическим. Изменение среднего геометрического при умножении усредняемых величин на константу. Переход к среднему арифметическому путем логарифмирования.
41. Среднее квадратическое и среднее гармоническое.
42. Степенное среднее и его частные случаи. Среднее геометрическое как предел степенных средних. Изменение степенного среднего при умножении усредняемых величин на константу.
43. Среднее по Коши и его частные случаи. Члены вариационного ряда как средние по Коши.
44. Оптимизационная задача, решением которой является выборочная медиана (при нечетном объеме выборки) и интервал между левой и правой медианами (при четном объеме выборки).
45. Средние по Колмогорову – определение и частные случаи. Степенные средние и среднее геометрическое как частные случаи средних по Колмогорову.
46. Взвешенные средние по Колмогорову (I типа – построенные по выборке, и II типа – построенные по вариационному ряду) и их частные случаи.
47. Эмпирическое распределение. Выборочная медиана как медиана эмпирического распределения (при четном объеме выборки n = 2k – интервал от k-го до (k+1)-го члена вариационного ряда).
48. Взвешенная медиана I типа (медиана случайной величины, вероятности совпадения которой с элементами выборки заданы) и взвешенная медиана II типа (медиана случайной величины, вероятности совпадения которой с членами вариационного ряда заданы).
49. Основные понятия теории измерений. Определения, примеры, группы допустимых преобразований для шкал наименований, порядка, интервалов, отношений, разностей, абсолютной. Требование устойчивости (инвариантности) статистических выводов относительно допустимых преобразований шкал.
50. Средние по Коши, результат сравнения которых устойчив в порядковой шкале.
51. Средние по Колмогорову, результат сравнения которых устойчив в шкалах интервалов и отношений.
52. Показатели разброса. Особая роль дисперсии.
53. Внутригрупповая дисперсия и межгрупповая дисперсия. Разложение общей дисперсии на внутригрупповую и межгрупповую (разложение дисперсий Р.А. Фишера). Однофакторный дисперсионный анализ и распределение Фишера.
54. Выборочный и теоретический линейные парные коэффициенты корреляции К. Пирсона и их свойства.
55. Выборочный коэффициент ранговой корреляции Спирмена.
56. Вероятностно-статистические модели временных рядов. Математическое ожидание, дисперсия, автокорреляционная функция. Стационарные временные ряды.
57. Временные ряды (ряды динамики). Тренд, периодические колебания, случайные отклонения. Моментные и интервальные ряды. Полные и неполные ряды. Ряды абсолютных показателей и ряды относительных показателей. Графики.
58. Основные показатели (характеристики) временных рядов (рядов динамики). Абсолютный прирост. Темп роста. Темп прироста. Цепные показатели и базисные показатели.
59. Сглаживание временных рядов (рядов динамики). Метод укрупненных интервалов.
60. Скользящие средние.
61. Сглаживание временных рядов (рядов динамики) методом наименьших квадратов. Детерминированная постановка задачи минимизации. Метод наименьших квадратов (в сравнении с графическим методом, методом наименьших модулей (Лежандр) и методом минимизации максимального уклонения (Чебышёв). Подход метода наименьших квадратов к оцениванию параметров. Решение для случая линейного тренда. Пример восстановления линейной зависимости с помощью таблицы.
62. Восстановленные значения и оценка точности восстановления функции методом наименьших квадратов. Критерий правильности расчетов.
63. Вероятностно-статистическая модель порождения данных в методе наименьших квадратов. Оценка остаточной дисперсии. Точечный и интервальный прогноз.
64. Метод наименьших квадратов для модели, линейной по параметрам. Оценивание коэффициентов многочлена. Пакеты программ. Преобразования переменных.
65. Метод наименьших квадратов в случае нескольких независимых переменных (регрессоров). Оценивание параметров функции Кобба-Дугласа. Интерпретация результатов сравнения восстановленных и исходных значений производственной функции.
66. Оценивание динамики потребительских цен на товары и услуги. Краткая история инфляции в России (1990-2016). Индивидуальные индексы. Весовые коэффициенты, задаваемые потребительской корзиной. Индекс потребительских цен (индекс инфляции).
67. Теорема умножения для индекса инфляции. Средний индекс (темп) инфляции. Годовая и среднемесячная инфляция.
68. Теорема сложения для индекса инфляции.
69. Применения индекса инфляции. Приведение к сопоставимым ценам. Реальные проценты платы за депозит. Реальные проценты платы за кредит. Оценка прожиточного минимума по методу Оршански.
70. Примеры инфляционных процессов в различных странах и в различные времена. Инфляция в Германии в 1922 г.
71. Курс доллара в сопоставимых ценах. Международные сопоставления на основе паритета покупательной способности.
72. Виды инфляции: спроса, издержек, административная.
73. Индекс –показатель сравнения двух состояний одного и того же явления. Индивидуальный индекс. Сводный (общий) индекс. Отчетные данные и базисные данные. Индекс как показатель центральной тенденции (индекс средний из индивидуальных). Примеры.
74. Индексы Ласпейреса, Пааше, Ирвинга Фишера.
75. Развитие статистики в России. Земская статистика. Вред решений Всесоюзного совещания статистиков 1954 г.
76. Структура современной статистической науки (математическая статистика – прикладная статистика – статистические методы в предметных областях).
77. Этапы развития прикладной математической статистики. Описательная статистика (до 1900 г.) - тексты, таблицы, графики, отдельные расчетные приемы (выборочное среднее арифметическое, МНК).
78. Параметрическая статистика (1900 – 1933) - модели параметрических семейств распределений – нормальных, гамма и др., теория оценивания параметров и проверки гипотез.
79. Непараметрическая статистика (1933 – 1979) - произвольные непрерывные распределения, непараметрические методы оценивания и проверки гипотез.
80. Нечисловая статистика (с 1979) - выборка состоит из элементов произвольных пространств, использование показателей различия и расстояний.
81. Деление статистики по виду данных: статистика случайных величин, многомерный статистический анализ, статистика временных рядов и случайных процессов, нечисловая статистика.


Вернуться наверх
 Профиль  
 
Показать сообщения за:  Сортировать по:  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Часовой пояс: UTC + 3 часа


Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB